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Abstract. Fuzzing is an automated software testing technique that has
achieved great success in recent years. While this technique allows devel-
opers to uncover vulnerabilities avoiding consequent issues (e.g., financial
loss), it can also be leveraged by attackers to find zero-day vulnerabilities.
To mitigate, anti-fuzzing techniques were proposed to impede the fuzzing
process by slowing down its rate,
misinforming the feedback, and complicating the data flow.
Unfortunately, the state-of-the-art of anti-fuzzing entirely focuses on en-
hancing its defensive capability but underestimates the nontrivial perfor-
mance overhead and overlooks the requirement of extra manual efforts.
In this paper, to advance the state-of-the-art, we propose an efficient
and automatic anti-fuzzing technique and implement a prototype, called
No-Fuzz.
Comparing to prior works, our evaluations illustrate that No-Fuzz intro-
duces less performance overhead, i.e., less than 15% of the storage cost
for one fake block.
In addition, in respect of the binary-only fuzzing, No-Fuzz can precisely
determine the corresponding running environments and eliminate unnec-
essary storage overheads with high effectiveness.
Specifically, it reduces 95% of the total storage cost compared with the
prior works for the same number of branch reductions.
Moreover, our study sheds light on approaches to improve the practicality
of anti-fuzzing techniques.
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1 Introduction

Fuzzing was first introduced as a software testing technique in 1990[25]. Typi-
cally, a fuzzer would persistently feed the target program with randomly gen-
erated inputs and observe the abnormalities of the program (e.g., segmentation
faults) to identify program bugs. Recently, fuzzers have been well-developed
- researchers integrate fuzzers with techniques like program instrumentation
[36,28,31,29,3,12,38], program analysis techniques [33,30,35] for the efficiency
in bug-finding. Besides, researchers also modify the fuzzing mechanisms of some
classic works [36,3], to meticulously reallocate the fuzzing resources on some spe-
cific tasks (e.g., directly fuzzing a particular code area [7,8,10,23]). In general,
fuzzers have achieved great success with plenty of bugs uncovered[14,27,15,31].
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However, exposing bugs in the program is a double-edged sword. Developers
can find and fix bugs before they spread on the internet. Meanwhile, attackers
can also leverage fuzzers to explore zero-day vulnerabilities, which might cause
financial loss to the companies. Although the adversaries can manually analyze
the commercial software, recent studies [32,17] have shown that attackers lean
more towards automated tools, like fuzzers, to find vulnerabilities than manual
analysis. In the face of the worse situations of bug finding, anti-fuzzing tech-
niques were proposed to hinder malicious use of fuzzers (ANTIFUZZ [16] and
FUZZIFICATION [21]). The purpose of anti-fuzzing is to maintain the advanta-
geous position of developers over adversaries on bug-finding. These techniques
introduce penalties on fuzzers to disturb the fuzzing heuristics or slow down the
fuzzing rate. The source codes of the protected program will be compiled into two
versions - one is protected with anti-fuzzing codes, and the other is unmodified.
Developers keep the original version, and they can thoroughly test the program.
Adversaries only retrieve the protected version, and the anti-fuzzing codes inside
the program can severely hinder the use of fuzzers. Consequently, developers are
expected to uncover far more bugs than the adversaries and fix them to avoid
the possible loss from zero-day vulnerabilities.

Anti-fuzzing techniques are promising, but the prototypes in prior works
should be improved to more fine-grained application scope. Intuitively, the stor-
age overhead should be taken into consideration for the practical adoption of
anti-fuzzing techniques. In prior works, fake blocks are artificially inserted into
the program to saturate the bitmap of fuzzers, while this technique can enlarge
the size of the program by even several times the original program. Developers
would be unwilling to burden such storage costs only for anti-fuzzing. Instead,
they can resort to lighter obfuscation tools whenever applicable, even though
these tools may not provide sufficient protection against fuzzers. Another fac-
tor that matters is the automation of the tools, i.e., existing prototypes are
inconvenient to use. On the one hand, the developers have to locate some code
areas manually; on the other hand, the prototypes have some dependencies with
third-party tools/libraries that may be incompatible with the OS of users. We
believe these factors challenge the future design and implementation of anti-
fuzzing techniques. More specifically, the anti-fuzzing techniques should ideally
hold the following two properties:

P1) Both storage and performance overheads should be minimized;
P2) The implementation should support automation which has no modifi-

cation to the development procedures of the program.
Based on these thoughts, we propose our solution to anti-fuzzing techniques.

The solution involves two categories of techniques - the passive detection meth-
ods and active disturbance methods. The passive detection methods precisely
check whether the protected program is being fuzzed and launch mitigation
strategies once fuzzers are detected. In our design, we integrate instrumentation
checking and execution frequency checking to achieve low overhead anti-fuzzing
techniques. The active disturbance methods impede fuzzers by attacking the
basic fuzzing assumptions and prevent the fuzzers from working normally. We
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optimize the defective fake blocks. In our design, the fake blocks achieve the
minimum storage overhead, which is less than 15% of that in prior works.

We implement these techniques as a fully automated tool, i.e., No-Fuzz.
The anti-fuzzing techniques are directly added to the source codes of programs,
i.e., no modification is needed to the compilation procedures (e.g., header files,
linked libraries, compilation commands). Notably, No-Fuzz is also compatible
with other anti-fuzzing techniques in prior works that are not mentioned.

In the evaluation, we measure the effectiveness of our techniques in reducing
branch coverage with real-world software from Binutils and two popular bench-
marks (Google FTS[1] and Magma[18]). Moreover, we show that our techniques
can hinder bug findings for the LAVA-M [13] dataset. To confirm our optimiza-
tions to prior works, we have also compared No-Fuzz with the corresponding
techniques in ANTIFUZZ[16] and FUZZIFICATION[21]. The results show that
our design introduces less overhead and mitigates the negative effects of anti-
fuzzing techniques on regular users. Specifically, we reduce about 95% of the
storage cost compared with the prior works for the same number of branch re-
ductions. Furthermore, we tackle the obstacle that there is no suitable metric
to compare different anti-fuzzing techniques currently. Existing works measure
the anti-fuzzing effects and the overhead separately. However, the performance
and overhead are orthogonal - both of them vary according to different configu-
rations; it is unfair to compare the performance of different works with unequal
overhead directly. Therefore, in addition to measuring the performance and over-
head separately, we propose a new metric - “anti-fuzzing efficacy” linking the two
metrics to measure the increased defensive capability per unit overhead.

In short, this paper makes the following contributions: 1) throws light on the
facts of existing anti-fuzzing prototypes and summarises the properties of the
ideal anti-fuzzing techniques; 2) designs and implements automated anti-fuzzing
prototype No-Fuzz which can detect and disturb run-time fuzzing mechanisms;
3) evaluate No-Fuzz and some of the prior anti-fuzzing techniques on common
benchmarks, showing No-Fuzz’s negligible overhead to the protected binary and
its effectiveness at impeding binary-only fuzzing. The source codes of all imple-
mented tools are available at https://github.com/CongGroup/No-Fuzz.

2 Technical Background of Anti-fuzzing

The purpose of anti-fuzzing techniques is to combat fuzzers to reduce the number
of bugs reported on protected binaries. Existing techniques can be majorly sum-
marized as anti-fast-execution, anti-feedback, and anti-hybrid techniques based
on the affected fuzzing mechanisms. We will briefly introduce them in the fol-
lowing parts of this section.

Anti-fast-execution: introduce latency to binary. One of the fuzzers’
assumptions is that more trials with different inputs are expected to explore
more paths in the binary. Fuzzers are usually designed with accelerating tech-
niques feeding thousands of seeds per second to the program under test (PUT)
[37]. Anti-fast-execution techniques insert latency into the binary to prevent

https://github.com/CongGroup/No-Fuzz
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fast-execution. However, the challenge is that the latency can also affect regular
users. ANTIFUZZ[16] inserts delay functions in the error handling codes man-
ually; FUZZIFICATION [21] inserts the latency functions in cold blocks. Both
techniques are trying to delay the areas that regular users rarely reach, but
fuzzers are easy to fall into.

Anti-feedback: disturb the feedback information. Modern fuzzers ma-
jorly rely on two feedbacks to decide fuzzing heuristics - coverage-feedback and
error signals. The coverage information is stored in a bitmap of limited size, and
fuzzers are expected to make decisions on seeds and mutations to maximize the
coverage. The error signals inform fuzzers to save and report the seeds triggering
bugs, which is also the ultimate goal of using fuzzers.

Anti-feedback techniques insert fake blocks into the protected binary to dis-
turb the coverage feedback. These blocks contain codes irrelevant to the pro-
gram logic but are recorded as valid blocks in the bitmap. If most space of the
bitmap has been taken up by these fake blocks, fuzzers will be unable to update
new coverage. ANTIFUZZ hijacks the control flows to randomly generated fake
functions in the protected program. FUZZIFICATION inserts a fixed number of
constraints and functions into the binary, and builds ROP chains as fake paths
on the assembly code snippets.

For the error signals, ChaffBugs[19] suggests inserting non-exploitable bugs
into the binary to confuse the segmentation faults reported to fuzzers. ANTIFUZZ
proposed an approach to hinder the crash discovery by installing a signal handler.
The handler hides signals from fuzzers with elegant exits, and thus fuzzers are
unaware of crashes.

Anti-hybrid: impede program analysis. Hybrid fuzzers[30,35,20,11] gen-
erally rely on taint analysis and symbolic execution to accelerate fuzzing. Anti-
hybrid techniques embed complex data flows in protected binary to hinder both
of the techniques. The idea is based on the fact that program analysis techniques
have difficulty in dealing with complex data flows due to the limited CPU re-
sources. ANTIFUZZ encrypts and decrypts the inputs and transforms variables
in critical comparisons to their hash values. Similarly, FUZZIFICATION adds
extra copy operations to the operand string to complicate the data flows and
mislead taint analysis engines to a wrong tag map.

3 No-Fuzz Design

No-Fuzz includes passive detection methods and the optimized active technique
(fake blocks) of prior works. Passive detection methods detect whether the pro-
tected binary is being fuzzed in binary-only-fuzzing (BOF) mode. Once the
fuzzers are found, the protection will trigger fuzzing mitigation mechanisms (e.g.,
introducing latency). As aforementioned, the active methods in prior works are
not practical due to the storage overhead. We optimize the fake blocks and design
the landing space exploiting the block-identification mechanism of binary-only
instrumentation. It reduces the storage overhead of a fake block to only one byte.
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3.1 Passive detection methods

A fundamental requirement for anti-fuzzing is to avoid the negative effects of
the inserted anti-fuzzing techniques on regular users. Ideally, if the protected
program itself can accurately perceive the fuzzers, we can impose severe penalties
on adversaries covertly. Based on this thinking, we introduce passive detection
methods to identify the running environments of protected binaries. Once fuzzers
are detected, we carry out mitigation mechanisms such as delaying the execution
and aborting the program to prevent fuzzing.

Detect binary-only instrumentation In the scenario of using anti-fuzzing
techniques, adversaries are not able to retrieve the source codes of the protected
binary - they rely on the binary-only mode of fuzzers. The key is that no mat-
ter what techniques they are using, they have to collect coverage information
of the target program. Techniques such as dynamic instrumentation, hardware
assistance, and binary rewriting are the most used for this observation, but all of
them cause significant latency (a timing gap) to the PUT. We can detect the tim-
ing gap between the native execution and the execution with coverage-collecting
codes to determine the running environment.

Timing-related techniques are common in the scope of malware detection
[22,24,5]. We learn from existing works and design the detection on binary in-
strumentations. In the native execution environment (real CPU), the control
flow directly falls into the block after a branch-taken instruction. On the con-
trary, with BOF, the instrumented program executes the additional instructions
collecting coverage at the beginning of a block. We detect BOF by checking the
edge instructions count (EIC). EIC is the estimated number of instructions ex-
ecuted when entering a function or a block (instructions of an edge). According
to the experiments, the EIC for BOF can be about ten times larger than that
in the native execution. If we detect the timing gap in a protected program, we
acknowledge the existence of BOF and carry out mitigation techniques.

Mitigation - Introduce latency. Due to the performance variation of the
CPU, there will be false positives in the detection. A few portions of executions
can have a relatively large timing gap, even if they are in the native environment.
This usually happens when the CPU is conducting context switching, and extra
overhead is counted as a part of the timing gap. According to our experiments,
0.03% of the executions are false positives in a stable environment, and the false-
positive rate will be 0.1% in a busy environment where too many parallel tasks
are executed simultaneously.

As a consequence, the mitigation mechanisms to fuzzing should be moderate
in case the false positives affect regular users. We add a one-second latency to the
program by triggering an IO blocking if the BOF instrumentation is detected.
Although one second is insufficiently long for a fuzzer, the general effectiveness
of the penalty can be guaranteed if we insert more than one detection function
into the protected program.
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Examining execution frequency The nature of fuzzing is that the PUT will
be re-executed a large number of times in a short period. This can be leveraged
to detect whether the program is being fuzzed. We come up with the idea from
“many a little makes a mickle”. If the PUT leaves some vestiges every fuzzing
round, the vestiges will accumulate during the fast re-executions. After a while,
they grow large enough and inform the PUT that it is being fuzzed. In our design,
the protected program creates a temporary file every time it runs. If more than
60 files are created in a minute (the threshold is according to configurations),
the program will be alerted to the existence of a fuzzer. However, the challenge
is that the program only creates the files, but it is difficult to manage them.
It can be time-consuming to traverse the temporary files and check which are
created by the protected program. Besides, not deleting them can mess up the file
systems for regular users. To cope with this program, we find that the daemon
process is suitable for the management of temporary files.

A daemon process is a process that runs as a background process. It detaches
from the parent process and keeps running after the termination of its parent.
We designed the daemon process to patrol the temporary files - to prevent the
temporary files from being unintentionally deleted and delete them after the
patrolling. The patrolling daemon process detaches itself from the protected
program during the execution. A temporary file with an ID to indicate its order
will be created by the daemon process. These files are created in ascending order,
and the largest order is the detection threshold for fuzzers. It then locks the file
for a period which we call “patrolling time”. After the patroling, it checks whether
the file it locks is correct and deletes the file it creates. The protected program
seeks temporary files with the threshold order for every execution. Once the
file is found, it means the program has been executed more than the threshold
number of times in the patroling time, and the BOF is likely to exist; so we can
apply the mitigation techniques.

Mitigation - Aborting program. Different from the timing gap, the re-
sults of the daemon process are accurate, and there are no false positives. We
can adopt a more severe penalty in this method. The protected PUT can abort
the execution or trigger an artificially inserted bug to misinform the crashes to
fuzzers. To further avoid the mitigation strategy affecting the regular users in
some unexpected situations, the developers can set a long patrolling time (5
minutes) and a large threshold (1000 files). Regular users can rarely execute the
program at such a high frequency.

3.2 Active methods: Minimum fake blocks

Existing fake blocks impede fuzzers at a non-optimal storage cost. ANTIFUZZ[16]
(default configuration) introduces about 20 MB of anti-fuzzing codes, while based
on the OSS-Fuzz[4] project, most commercial software occupies no more than
100 MB. Besides, small programs are more sensitive to storage costs and are
hard to burden high storage costs. Unfortunately, they are more likely to be
chosen as the fuzzing targets by attackers due to their faster execution speed
and less program logic.
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This defect comes to the fore as future fuzzers enhance the capability of
fuzzing mechanisms (e.g., size of the bitmap) or improve fuzzing heuristics (e.g.,
scheduling seeds to avoid triggering anti-fuzzing mechanisms). Anti-fuzzing tech-
niques have to insert more protection codes in proportion to the increased fuzzer
capability to handle the intensified arms race. Under this condition, the funda-
mental storage overhead should be as low as possible; otherwise, the proportioned
overhead needed in the arms race will be unsustainable.

The landing space is designed to minimize the extra storage overhead of fake
blocks. Existing approaches pile up function calls and constraints, disturbing
fuzzers at the function level, where one fake block takes up about nine bytes
(one cmp and one jmp instructions). However, we observe that some of the
storage overhead of fake blocks is unnecessary at the assembly level. For example,
C compilers generate function frames for each function that controls the base
pointer and stack pointer (e.g., push ebp). These assembly codes have nothing to
do with anti-fuzzing, and eliminating these codes can further reduce the storage
overhead.

As adversarial cannot retrieve the source codes of targets, they use BOF with
the assistance of external tools to collect coverage feedback. These tools insert
codes before entering a new block. If a control-flow-changing instruction (jmp,
call and ret) is encountered, they generate a new block record as the updated
coverage. Theoretically, the minimum block is the instruction only occupying one
byte (opcode of the minimum size), which should be at most 15% (from nine
bytes to one byte) of the storage cost of prior works. To achieve the minimum
fake block, we instrument each function with a code segment called landing
space. The landing space contains instructions that have no effect on the normal
execution. They are either one-byte instructions or two-byte instructions with
an immediate value which is the opcode of a one-byte instruction. This ensures
that each byte in the landing space can be translated into a valid instruction.

We further modify the destination address of function calls to the address
of a random byte in the landing space. The rationale is that when the modified
function call is invoked, the control flow “land” at a random instruction. The
fuzzer considers this instruction the start of a new block and records the address
as new coverage. Since the control flow can “land” at any byte in the landing
space, fuzzers will record most of the possible addresses after sufficient rounds
of fuzzing. The corresponding fake coverage can overwhelm the fuzzer’s bitmap.

Figure 1 illustrates the assembly codes of a function and the landing space.
The original destination address of the function is 0x40058b, and we insert the
landing space before this address in the text section between 0x400586 and
0x40058a. The modified function call (0x400586 + rand()%6 ) jumps to the
landing space or the original start of the function. In this example, a fuzzer
will record six fake blocks at the cost of six bytes.

Optimizations. The naive implementation of the landing space seems able to
disturb the coverage feedback of BOF. However, we found that the size of the
landing space is restricted. A too large size introduces non-negligible latency to
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Fig. 1: A function with landing space.$iv is the immediate value, in this example,
it will be 0x90 which is the opcode for nop.

40058b
40058c
40058f

push rbp
mov rbp, rsp
sub rsp, 10h

400586
400587
400588
400589
40058a

nop
xor al, $iv
nop
cli
cmc

LandingSpace*(0x400586 + rand()%6)(argu)

Modified function call

the protected program. Moreover, fuzzers like AFL calculate the hash value by
exclusive-or operations on the addresses of two blocks. The problem is that the
addresses of fake blocks in the landing space are close, and so are the calculated
hash values. The chance of hash collision in the landing space is higher than that
in normal functions. Intuitively, the more hash collisions happen in the landing
space, the less bitmap can be saturated by fake blocks. In other words, the fuzzer
will be more powerful in discovering real branches in the protected program.
As a means of coping strategy, we propose two optimizations to mitigate the
limitations.

Jump over unnecessary instructions. If the control flow lands on the
first few bytes in the landing space, it has to execute the rest instructions,
which incurs significant latency for a large landing space. To avoid executing
the unnecessary instructions, we modify some one-byte instructions to a short
jump, and the jumping offset is the opcode of the next instruction. As shown
in Figure 2, if control flow lands at 0x400500, the assembly code is translated
as a two-byte short jump with offset 0x36. However, if it lands at the next byte
0x400501, the corresponding assembly code is “xor al, 0x90”. The functionality
of the landing space still remains as every byte can be disassembled correctly
and recorded as a new block. Yet the jump instructions reduce the performance
overhead to 5% of the original landing space.

Spray LandingSpace at different addresses. To reduce the hash colli-
sion rates, we increase the blocks of different addresses. We wrap functions in
the original program with several intermediate blocks. The intermediate blocks
only redirect the control flows in the protected binaries but have no effect on
the program execution. We artificially keep wide disparities in the addresses of
intermediate blocks; thus, these blocks are likely to generate more hash values
than those generated from a single landing space. The size of the landing spaces
in these functions is accordingly reduced, and they will be distributed to the
intermediate blocks.
4 Evaluation

We evaluate No-Fuzz to answer the following four research questions (RQs):

– RQ 1. Can No-Fuzz hinder fuzzers from exploring new branches?
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Fig. 2: Jump over unnecessary blocks

400596
400597
40059a

push rbp
mov rbp, rsp
sub rsp, 10h

400500
400501
400502
...
400594
400595

0xeb
0x34
0x90
...
0x90
0xf5

LandingSpace
400500
400502
...

jmp 0x36
nop
...

400501
...

xor al, 0x90
...

Assembly

Fig. 3: Spray intermediate functions in protected binaries

main

entry(argu)

main

Intermediate
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inal
functions

(b)

main

func(argu)

main

(a)

idx=rand_pick_unexecuted();
func_set[idx](argu);

– RQ 2. How effective are the anti-fuzzing techniques at preventing fuzzers
from finding bugs?

– RQ 3. What are the storage and performance overhead to deploy anti-
fuzzing techniques?

– RQ 4. What is the suitable metric to compare different anti-fuzzing tech-
niques?

For RQ 1, coverage is considered orthogonal to the bug-finding abilities of
fuzzers [9]. The more coverage a fuzzer can reach, the more likely it finds bugs
inside the target program. We evaluate the coverage reduction on real-world
binaries after applying No-Fuzz to show the defense effectiveness of anti-fuzzing
techniques. To stress RQ 2, we evaluate the anti-fuzzing techniques on the
LAVA-M[13] benchmark and measure the shortest time needed to find a bug.
The benchmark consists of four buggy binaries (base64, md5sum, who, uniq)
with dozens to thousands of artificially inserted bugs.

The RQ 3. and RQ 4. are both related to the overhead evaluation of anti-
fuzzing techniques. To answer RQ 3., we evaluate the storage and performance
overhead of anti-fuzzing techniques on real-world programs of different sizes.
The RQ 4. is based on the concern that the overhead alone is not able to judge
an anti-fuzzing technique comprehensively. The problem is that if the number
of defensive codes added to the protected programs increases, the overhead is
likely to increase accordingly. The defensive capability is orthogonal to the extra
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overhead as the more defensive codes are inserted into the protected binary, the
safer it is able to be. Thus judging a defensive technique only based on one
metric (anti-fuzzing effect or the overhead) is not enough. We suggest combining
these two metrics and unifying the judging criteria of anti-fuzzing techniques by
measuring the defensive ability at a unit cost of storage or execution rate. We
define a new metric anti-fuzzing efficacy as the number of reduced branches per
byte of extra storage cost and that per millisecond of latency. It measures the
capability of anti-fuzzing techniques with respect to the introduced overhead.

In all experiments, the latency mitigation is set to be one second; the daemon
process will patrol for one minute and alert if there are more than 60 times
of executions; the landing space is configured to occupy 100 bytes, and the
functions will be wrapped in 50 intermediate functions.AFL and AFL-based
fuzzers (AFLFast and QSYM) use AFL-QEMU. HonggFuzz supports Intel-PT
and QEMU, and we adopt both binary-only modes. Each fuzzing campaign runs
with three CPU cores. Notably, QSYM runs two AFL instances with two CPU
cores and an SMT solver using one core. Fuzzing campaigns on the LAVA-M
dataset are kept running for 48 hours, while the others last for 24 hours. Due to
the nondeterministic fuzzing behaviors, we repeat fuzzing campaigns ten times
for each fuzzer x target combination.

4.1 Reducing code coverage

We evaluated the branch coverage of five fuzzers against eight real-world binaries
from Binutils, Magma, and Google FTS. Figure 4 shows the average branches
covered by each fuzzer on the binaries with and without No-Fuzz protection.
Each technique is separately evaluated to avoid the effect of one technique cov-
ering up others. From the figure, the combo of all No-Fuzz techniques can severely
hinder the branch explorations of fuzzers. The fuzzers can only discover 36.9%
of branches on average that should have been, and most of the branches are just
for initializations and input correctness checks.

A single passive detection technique reduces 34.8% - 52.2% of the branch
coverage. The effect variation of the detection should also be attributed to the
choices of mitigation techniques and the difference in fuzzers. As the results show,
aborting the PUT (the purple columnar) is more effective than introducing la-
tency (the gray ones) to the protected programs. However, introducing latency
affects users more slightly than aborting the program. This is the trade-off be-
tween effectiveness and impacts on users. It will be reckless to conclude that
one mitigation technique outperforms the others. Our suggestion is to apply the
more severe mitigation techniques to the more precise detection techniques.

The landing space hinders, on average, 32.4% of the branches. We observe
that it is less effective against HonggFuzz. It is because Honggfuzz records the
coverage in a temporary file and the size of the bitmap is 16M, while the bitmap
of AFL only occupies 64K. We consider the current configuration of the landing
space too small to saturate the bitmap of Honggfuzz. In the actual situation,
the developers can configure a larger landing space for better protection against
Honggfuzz.
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Fig. 4: Branch covered by four fuzzers against eight binaries with and without dif-
ferent protections. The techniques are Timing Gap, Daemon Process, Landing
Space. The fuzzers are AFL, AFLFast, Honggfuzz-QEMU,Honggfuzz-PT, and
QSYM .
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4.2 Preventing fuzzers from finding bugs

LAVA-M benchmark. Despite many recent works suggesting using the up-
to-date benchmarks in bug-finding experiments(e.g., Google fuzzer test suite[1]
and Magma[18]), we find they are not suitable for the evaluation of BOF. The
problem is that these benchmarks heavily rely on sanitizers, but unfortunately,
most BOF techniques are not able to support sanitizers. There are some works
like QEMU-AddressSanitizer[2] to fill the gap in BOF and sanitizers, but our
evaluation covers different BOF techniques, and not all of them have such com-
plementary tools. Due to this limitation, we decided to use LAVA-M, whose bugs
directly trigger segmentation faults and can be caught by the BOF.

Moreover, the efficiency of BOF severely degrades compared with static in-
strumentation, which is almost a quarter of that of the latter. Even the LAVA-M
benchmark contains thousands of bugs; only a few unique bugs can be uncov-
ered for each buggy binary in BOF. Measuring the number of bugs found will be
insignificant even though it is considered the ground truth for fuzzer evaluation.
Instead of the number of bugs found, we measure the time that fuzzers need to
find the first bug in each buggy binary within 48 hours. This metric can better
illustrate the bug-finding capabilities of BOF in the LAVA-M benchmark.

Results. The average time of five fuzzers to find one bug in the LAVA-M
benchmark is shown in Table 1. From the table, we find that all fuzzers are able
to find at least one bug in the unprotected programs in 48 hours. Note that
QSYM finds the bug in only several minutes, which is quite faster than other
fuzzers. It can be attributed to the design of the LAVA-M benchmark. The bugs
in LAVA-M are all designed based on an integer comparison. If an input can
bypass the comparison, the corresponding bug will be triggered. This mechanism
is essentially more beneficial to fuzzers that are able to solve constraints. It makes
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sense that QSYM , as a hybrid fuzzer, outperforms other mutational fuzzers due
to its symbolic execution engine.

On the other hand, with the anti-fuzzing defenses, some fuzzing campaigns
exceed the 48-hour time limit and fail to find any bug. The rest campaigns
uncover some bugs, but it takes much more time than that spent on the corre-
sponding unprotected programs. Notably, we found Honggfuzz is incompatible
with the target md5sum in LAVA-M as it misjudges the handled errors as crash
signals. HonggFuzz generates millions of crash seed files, and the majority of
them are false positives. It is difficult to distinguish the correct crash seeds in
the millions of files, and we have to discard this fuzzer x target combination.

Generally, the passive detection techniques and the landing space successfully
impede all fuzzing campaigns, as the time to find a bug extends after applying
these techniques. If all of the anti-fuzzing techniques in No-Fuzz are applied, none
of the fuzzing campaigns can find a bug. Overall, the evaluation confirms that
No-Fuzz is effective at preventing the BOF of different fuzzers from discovering
bugs in the protected programs.

Table 1: Time of fuzzers to find a bug in native and protected LAVA-M.
√

means
the fuzzing campaign fails to find a bug within 48 hours.

native TG DP LS all
base64
AFL 12h54m

√ √ √ √

AFLFast 13h8m
√ √ √ √

Hfz-QEMU 1h22m
√ √ √ √

Hfz-PT 5h23m
√ √ √ √

QSYM 2m
√ √ √ √

md5sum
AFL 36h32m

√ √ √ √

AFLFast 9h20m
√ √ √ √

Hfz-QEMU - - - - -
Hfz-PT - - - - -
QSYM 51m

√ √ √ √

who
AFL 3h8m

√ √ √ √

AFLFast 6h37m
√ √ √ √

Hfz-QEMU 37m 2h9m
√

6h32m
√

Hfz-PT 4h31m 11h45m
√ √ √

QSYM 1m
√ √ √ √

uniq
AFL 7h19m

√ √ √ √

AFLFast 6h47m 23h59m
√ √ √

Hfz-QEMU 4m 10h55m
√

9h3m
√

Hfz-PT 2h48m 16h20m
√

17h56m
√

QSYM 5m
√ √ √ √

4.3 Performance & storage overhead of No-Fuzz

We are inspired by the fact that the size of input files can affect the performance
overhead accordingly. Generally, a larger input will invoke more functions and
be processed for a longer time. Considering the overhead of the landing space is
also accordingly proportional to the functions executed, for fairness, we prepare
two sets of input files. One set only contains small invalid files, which can fastly
trigger errors in the programs, while the other set consists of valid samples of
different sizes to trigger the normal functionalities. The results adopt the average
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time of the executions with both sets of input samples. Another consideration
is that the overhead will be less significant for large and complex programs.
The programs are categorized into two groups based on their size and average
execution time to mitigate the bias in the evaluations, as shown in Appendix
A3. The evaluation results of each group will be analyzed separately.

Performance overhead. As shown in Table 2, the performance overhead for
passive detection techniques is about 10-20% for small binaries and less than 1%
for large binaries. Although the overhead is relatively large for small programs,
the absolute latency is only around 5 ms, which is usually unnoticeable for regular
users. The timing gap detection introduces a little more latency than the daemon
process. We think it should be attributed to the false positives of the timing gap.
Similarly, the landing space introduces the overhead proportioned to the size and
complexity of the programs. Small programs incur 40% latency, while for large
programs, the proportion decreases to 2%.

Storage overhead. From Table 2, No-Fuzz introduces negligible storage
overhead to protected binaries. The passive detection techniques take up storage
ranging from about 1KB to 50KB ( 10KB on average), but they are all less than
1% of the original size of the protected programs. The landing space inserts fake
blocks according to the number of functions in the protected binary. Basically,
the fewer functions in the original program, the less overhead it has. The storage
cost can range from 0.3MB to 1MB (0.8M on average) for different programs.

Comparisons with prior works. We evaluate the existing anti-coverage
techniques in prior works to show that the landing space is worth it. The default
configurations of ANTIFUZZ and FUZZIFICATION insert a fixed number of fake
blocks; thus the storage overhead is stable - 20MB for ANTIFUZZ and 1.2MB for
FUZZIFICATION . Clearly, both techniques take up more space than the landing
space, and the storage advantage of No-Fuzz is more evident for small binaries
due to the accordingly fewer fake blocks in smaller binaries. Note that the storage
overhead of FUZZIFICATION is much smaller than that of ANTIFUZZ . However,
according to our experiments (Appendix A1), we find the default configuration
of the FUZZIFICATION is not enough to saturate the bitmaps of fuzzers. The
real storage overhead of the effective configuration of FUZZIFICATION should
be even larger than the current 1.2 MB.

Table 2: Overhead(CPU) of No-Fuzz and anti-coverage techniques of ANTIFUZZ
and FUZZIFICATION on real-world programs.

TG DP LS All AF(cov) FZ(cov) Reference
CPU
Small 6.8ms(21.4%) 3.4ms(10.6%) 13.1ms(40.9%) 47.2ms(147.5%) 11.3ms(35.3%) 14.7ms(45.9%) 32.0ms
Large 23.5ms(1.1%) 10.7ms(0.5%) 43.8ms(2.0%) 64.7ms(3.0%) 15.6ms(0.7%) 44.6ms(2.1%) 2156.2ms
Storage
Small 8.4K(0.2%) 10.5K(0.3%) 0.8M(25.9%) 1.1M(35.3%) 22.2 M(696.6%) 1.25 M(39.1%) 3.2M
Large 43.0K(0.04%) 27.1K(0.02%) 2.0M(1.9%) 2.4M(2.2%) 22.3 M (21.0%) 1.27 M (1.2%) 106.5M

4.4 Anti-fuzzing efficacy

To compare the merits of different anti-fuzzing techniques, we introduce a new
metric - anti-fuzzing efficacy. The efficacy illustrates the associations between
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the anti-fuzzing effects (coverage reduction) and storage/performance overhead.
As anti-fuzzing techniques improve the defensive capability by inserting extra
codes into the protected programs, more defensive codes promise more defensive
effects. A well-designed anti-fuzzing technique should introduce as low overhead
as possible while possessing effective defensive capability. The defense capability
per unit storage/performance cost should be a better metric to describe the anti-
fuzzing effects. Specifically, we calculate the efficacy by the number of coverage
reductions every kilobyte of defensive codes and the reduction of every millisec-
ond of latency. As a reference, we also calculate the efficacy of ANTIFUZZ and
FUZZIFICATION based on the results in Appendix A1.

From Table 3, the passive detection techniques have both the highest per-
formance and storage anti-fuzzing efficacy. Passive detection techniques are the
most affordable anti-fuzzing techniques that can hinder the BOF at the lowest
cost. Moreover, these techniques insert fixed defensive codes into the protected
programs. Thus, the efficacy is stable and more or less has the same order of mag-
nitude among all evaluated programs. The performance efficacy of the landing
space is about 20% of the passive detection techniques, and the storage efficacy
is much smaller (only about 1% of the passive detection methods). Despite the
fact that the landing space seems to be less efficient, it can be deemed as a
complement to the passive detection techniques. As we will discuss in Section
5, a single defensive technique is weak against adversaries, and it is worth the
development of different techniques.

For reference, we evaluate the anti-coverage techniques of ANTIFUZZ and
FUZZIFICATION . The performance efficacy of landing space and ANTIFUZZ
is close, while FUZZIFICATION is inefficient due to the insufficient number of
blocks. The storage efficacy of the landing space is 14-28 times that of these anti-
coverage techniques, i.e., on average, we reduce about 95% of the initial storage
cost. It illustrates that No-Fuzz is more practical, which can better utilize the
storage while keeping adequate anti-fuzzing protection.
Table 3: Space and performance efficacy of different anti-fuzzing techniques
against four fuzzers.

TG DP LS All AF(cov) FZ(cov)
Performance (#branches / ms)
AFL 183.9 559.3 84.2 46.6 144.1 11.5
AFLFast 165.0 509.3 61.9 42.3 121.7 5.3
Hfz-Q 158.5 530.1 86.2 47.0 133.9 17.0
Hfz-P 134.5 428.4 62.6 36.9 91.9 5.0
QSYM 226.8 684.9 120.7 58.6 174.6 14.8
Avg 173.7 542.4 83.1 46.3 133.2 10.7
Storage (#branches / kB)
AFL 148.8 181.1 1.4 2.0 0.07 0.14
AFLFast 133.6 164.9 1.0 1.8 0.06 0.15
Hfz-Q 128.3 171.6 1.4 2.0 0.07 0.20
Hfz-P 108.9 138.7 1.0 1.6 0.05 0.06
QSYM 183.6 221.8 2.0 2.5 0.09 0.17
Avg 140.6 175.6 1.4 2.0 0.07 0.14
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5 Discussion

While our design performs effectively and efficiently, it could be further im-
proved. We consider our design a complement to prior works, and we appreciate
some designs in prior works which also deserve adoption in the future develop-
ment of anti-fuzzing tools (e.g., installing the signal handler to hide crashes). We
will also stress these concerns in our discussion. In the following, we will discuss
the robustness of the anti-fuzzing technique and the advantages of anti-fuzzing
over obfuscation because the potential inherent problems (i.e., robustness) and
the seemingly possibility that they can be substituted by obfuscation techniques
in certain cases.

Robustness of anti-fuzzing techniques. A primary concern about anti-
fuzzing is its robustness. In particular, a dedicated attacker can perform manual
analysis to disarm the defense if the details are known, and several prior works
suggested applying obfuscation techniques as a countermeasure against reverse
engineering. However, for experienced attackers, obfuscation techniques can also
be disarmed. We want to reflect the necessity for anti-fuzzing techniques to be ro-
bust against manual analysis. Anti-fuzzing techniques are proposed to introduce
extra efforts (time, resources, knowledge, etc.) adversaries need to fuzz a pro-
tected program. Particularly, they are suitable to defend the untargeted fuzzing
tasks on a large scale that are not worth enough to analyze a single binary
for attackers manually. Moreover, anti-fuzzing techniques enhance the basic re-
quirements of BOF, from knowing nothing to at least understanding anti-fuzzing
and reverse-engineering techniques. The defensive techniques can further reduce
the chance that protected binaries are chosen as the targets of BOF. Due to
the above reasons, we consider that reverse engineering does not contradict the
ultimate purpose of anti-fuzzing techniques.

Anti-fuzzing or obfuscation. Obfuscation is originally considered a po-
tential solution to anti-fuzzing. Compared with the emerging anti-fuzzing tech-
niques, it is well-developed with profound community support. Prior works have
conducted some experiments to show the ineffectiveness of obfuscation in anti-
fuzzing[21,16]. However, we will revise their arguments with more experiments
and show that obfuscation techniques can be effective at times.

In fact, there are already obfuscation techniques designed to confront sym-
bolic executions, which are similar to anti-hybrid techniques [6,34]. In addition,
the obfuscation techniques involving self-modifying codes can be even more pow-
erful against BOF. The self-modifying code is a common technique used in pack-
ing and encryption. It reuses the memory space by overwriting the existing op-
codes with those of new instructions. The problem is that no matter how many
functions are overwritten to a self-modifying block, they possess the same mem-
ory address. Most fuzzers record the hash values of function block addresses,
and the self-modifying block will be identified as only one function; thus, the
coverage information of overwritten functions is lost.

We have conducted some experiments with BOF and dummy programs where
the programs are protected by self-modifying codes. The results (appendix A4
and A4) show that BOF cannot be correctly performed on the program with self-
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modifying codes. Besides, [26] shows that self-modifying codes will severely slow
down the translations in emulators, which confirms the anti-fuzzing effectiveness
of obfuscation against BOF like afl-qemu and honggfuzz-qemu. Fortunately,
self-modifying codes are usually not welcomed by developers. Commercial soft-
ware rarely uses self-modifying codes due to the possibility of false positives as
malicious attempts and the new bugs introduced by risky modifications. Over-
all, anti-fuzzing techniques cover the shortage of static obfuscation techniques
against fuzzers, and we argue that future anti-fuzzing works should be designed
in the scope of static techniques without self-modifying codes.

Future work. We consider that the future work of anti-fuzzing can focus on
the following two aspects. On the one hand, we can keep reducing the overhead
for existing anti-fuzzing techniques, which increases the number of defensive
codes inserted into a program in a disguised way. A possible direction is that the
anti-hybrid techniques in prior works are overqualified to disturb the program
analysis. They use cryptography functions (e.g., hash, CRC) to wrap the vari-
ables. We have conducted some experiments, and it turns out that only hundreds
of calculations are enough to overwhelm the symbolic executions, and they are
cheaper than the heavy cryptography functions. On the other hand, future anti-
fuzzing works can embed anti-fuzzing mechanisms into the program logic. For
instance, similar to the flatten technique in obfuscation, we can split a block into
several new blocks, and each new block contains a part of the assembly codes of
the original block. Thus, each new block is logically dependent on the program
and cannot be easily eliminated. Indeed, there are some challenges that need to
be solved for this idea, e.g., how to maintain the context among different blocks
and how to ensure the number of fake blocks is large enough.

6 Conclusion
In this paper, we design several practical and fully-automated anti-fuzzing tech-
niques and integrate them into a prototype tool No-Fuzz. We optimize the stor-
age cost of fake blocks as prior works insert them at the function level occupying
an unrealistic storage room. In addition to the active anti-fuzzing techniques that
disturb the fuzzing mechanisms, we also design the passive detection methods
which precisely determine the running environments of the protected programs
and launch mitigation techniques when binary-only-fuzzing exists. The evalu-
ations demonstrate that No-Fuzz significantly reduces the branch coverage of
fuzzers. Furthermore, we have also shown that No-Fuzz can impede bug findings
in the LAVA-M dataset, i.e., fuzzers have to spend much more time finding a
bug. We propose a new metric, the anti-fuzzing efficacy, to measure the defensive
capability of an anti-fuzzing technique at a unit overhead cost. Based on this
metric, we illustrate that No-Fuzz achieves the same or higher level of protection
against fuzzers with even lower overhead than prior works.

In summary, we enhance the awareness of overhead and the importance of
automation in an anti-fuzzing arms race. Inspired by this, we summarize the
desired properties for future anti-fuzzing techniques - be with less overhead and
automated. We have moved one step toward practical anti-fuzzing techniques
and hope our efforts can further promote this topic.
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A Appendix

Table A1: The branch coverage of ANTIFUZZ and FUZZIFICATION
readelf objdump size nm xmllint libpng gueutzli sqlite3

AFL
AF(cov) 1745 1449 839 706 1691 919 2103 3840
FZ(cov) 4498 2630 1247 1529 5556 1702 2805 4994
AFLFast
AF(cov) 1913 1345 656 774 1503 958 2207 3757
FZ(cov) 3383 2848 1102 1411 5463 1492 2727 5065
Hfz-Q
AF(cov) 1049 875 622 894 4117 1073 2499 4103
FZ(cov) 2422 2812 1277 1523 6122 1996 3040 6144
Hfz-P
AF(cov) 1884 1067 899 632 3555 788 1931 3097
FZ(cov) 2612 2374 1148 1190 5312 1540 2563 4833
QSYM
AF(cov) 1946 1276 814 932 4255 1287 2493 4441
FZ(cov) 5072 3731 1448 1740 6442 2084 3538 7433

Table A2: The overhead comparisons between upx and existing anti-fuzzing tech-
niques. As emphasized in the table, the overhead of existing anti-fuzzing tech-
niques is more or less close to that of packing techniques.

readelf objdump
Exec time 125.4 ms 2156.2 ms
upx +13.0% +24.3%
AF(cov) +37.7% +2.0%
FZ(cov) +32.9% +14.6%
Storage cost 3.22 M 9.94 M
upx -2.24M(-69.6%) -7.44 M (-74.8%)
AF(cov) 21.27 M (+660.6%) 21.25 M (+213.8%)
FZ(cov) 1.29 M (+40.1%) 1.28 M (+12.9%)

Table A3: Real-world programs of different size and execution time.
size & exec time files

Small readelf, objdump, size, nm
guetzli, libpng, sqlite3, xmllint

Large ffmpeg_g, nomacs, calc, impress
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Table A4: We fuzz a dummy program as well as the obfuscated versions. The
dummy program contains several magic-byte checks and will crash if the con-
straints are satisfied. Tigrees(S) only applies static obfuscation, while Tigrees(D)
adopts self-modifying codes which are dynamic.

First Crash Fuzz Rate
Native 45s 1805 exc/s
UPX 1m27s 1800 exc/s
Tigress(D) + ∞ 0 exc/s
Tigrees(S) 2m4s 1667 exc/s
llvm-obfuscator 1m48s 1400 exc/s

Table A5: Evaluations to launch BOF on obfuscated/packed binaries. × means
BOF cannot initialize on the binary within 30 minutes for all four fuzzers.

√

means all fuzzers succeed in launching the BOF. As the table suggests, self-
modifying codes (upx & obfuscation with JIT) can completely prevent the BOF
from initialization.

native upx llvm-obf Tigress(D) Tigress(S)
dummy

√ √ √
×

√

binutils
√

×
√

×
√

libjpeg
√

×
√

×
√

libpng
√

×
√

×
√

libtiff
√

×
√

×
√

ffmpeg
√

×
√

×
√

gzip
√

×
√

×
√
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