
Automated Cross-Platform Reverse Engineering of
CAN Bus Commands From Mobile Apps

Haohuang Wen
The Ohio State University

wen.423@osu.edu

Qingchuan Zhao
The Ohio State University

zhao.2708@osu.edu

Qi Alfred Chen
University of California, Irvine

alfchen@uci.edu

Zhiqiang Lin
The Ohio State University

zlin@cse.ohio-state.edu

Abstract—In modern automobiles, CAN bus commands are
necessary for a wide range of applications such as diagnosis,
security monitoring, and recently autonomous driving. However,
only a small portion of CAN bus commands is standardized,
and a vast majority of them is developed privately by car
manufacturers. Today, the most effective way of revealing the
proprietary CAN bus commands is to reverse engineer with
real cars, which unfortunately is time-consuming and costly.
In this paper, we propose a cost-effective (no real car needed)
and automatic (no human intervention required) system, CAN-
HUNTER, for reverse engineering of CAN bus commands using
just car companion mobile apps. To achieve high effectiveness,
we design an efficient technique to uncover the syntactics of
CAN bus commands with backward slicing and dynamic forced
execution, and a novel algorithm to uncover the semantics of CAN
bus commands by leveraging code-level semantic clues. We have
implemented a prototype of CANHUNTER for both Android and
iOS platforms, and tested it with all free car companion apps (236
in total) from both Google Play and Apple App Store. Among
these apps, CANHUNTER discovered 182, 619 unique CAN bus
commands with 86.1% of them revealed with semantics, covering
360 car models from 21 car manufactures. We have also evaluated
their correctness (both syntactics and semantics) using public
resources, cross-platform and cross-app validation, and also real-
car testing, with which over 70% of all the uncovered commands
are validated. We observe no inconsistency in cross-platform and
cross-app validation. While there are 3 semantic inconsistency
among 241 manually validated CAN bus commands from public
resources and real-car testing, we find that these three cases are
actually caused by mistakes from app developers.

I. INTRODUCTION

In modern automotive systems, nearly all vehicle con-
trol functions ranging from steering, acceleration, braking,
to lighting are controlled by a variety of Electronic Control
Units (ECUs) communicating over in-vehicle networks. In
such networks, Controller Area Network (CAN) is the most
widely deployed communication protocol today [38]. Conse-
quently, the knowledge of the syntactics (i.e., the structure,
the format, and the concrete value) and semantics (i.e., the
meaning and functionality) of its command messages, or
CAN bus commands, is crucial to many applications such as
automation, diagnosis, and security. For instance, parsing and
constructing CAN bus commands are the most basic building

blocks for in-vehicle fault diagnosis [56] [52], vehicle security
testing [38] [27] [43] [32], security monitoring [47] [28],
and recently programmable vehicle control (e.g., autonomous
driving) [15].

Although CAN bus commands are highly valuable, only a
small portion of them is standardized and the vast majority of
them is developed privately by car manufacturers. As a result,
there are usually completely different CAN bus commands
across different car models [20]. Over the years, a significant
amount of effort has been made to reverse engineer CAN
bus commands for different car models. Currently, the state-
of-the-art is to rely on dynamic testing with a real car by
analyzing the repeated correlation patterns between specific
CAN messages and vehicle behavior. In particular, there are
two ways to do so: (i) one is to manually trigger physical
actions in the car, e.g., stepping on the throttle, and then
observes changes on the CAN bus [13] [4]; (ii) the other is
to generate and send arbitrary CAN messages to the CAN
bus, and then observe the triggered physical actions on the
vehicle [38] [39]. Unfortunately, these approaches not only
require a huge amount of hardware resources, e.g., real cars
and testing equipment such as jack stands [38] and CLX000
CAN analyzers [4], but also are time-consuming and error-
prone due to the significant manual efforts involved.

However, recently we have witnessed a rapid growth of the
Internet of Things (IoT) in many application domains including
automobiles for various reasons such as convenience and
automation. Today, car manufacturers and 3rd-party developers
have produced a great number of mobile apps to connect
with in-vehicle systems such as in-vehicle infotainment (IVI)
and offer convenient app-based vehicle control or diagnosis.
Interestingly, to achieve compatibility with existing in-vehicle
systems, these apps fundamentally still rely on the CAN bus
commands to engage with the vehicles. That is, these apps
must contain the logic to generate CAN bus commands either
directly or indirectly (through translation or relay in a dongle
or cloud server) for each supported vehicle. As a result, such a
newly-formed automotive mobile app ecosystem can create a
new direction for reverse engineering of CAN bus commands.

To demonstrate this new approach, in this paper we present
a cost-effective (no real car needed) and automatic (no hu-
man intervention required) system, CANHUNTER, to reverse
engineer the CAN bus commands (targeting both syntactics
and semantics) from car companion apps. To achieve high
effectiveness, we have to address several technical challenges.
First, to recover the syntactics, we need to locate and analyze
the CAN bus command generation logic in car companion

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.24231
www.ndss-symposium.org

apps. However, since there is neither standard guidance nor
unified programming interfaces for CAN bus command gen-
eration, how to systematically locate this logic is non-trivial.
Moreover, even with such logic located, it is unclear how to
trigger the generation process without the required execution
contexts such as real cars. To overcome these challenges, we
use a technique known as backward slicing that starts from
the standardized low-level network programming interfaces to
locate the generation paths. Meanwhile, based on the insight
that these apps typically embed CAN bus commands with-
out requiring sophisticated external input, we adapt dynamic
forced execution techniques (e.g., [60] [36] [34]) to forcefully
execute the CAN commands generation paths without real cars.

In addition to revealing the syntactics of CAN bus com-
mands, CANHUNTER also focuses on recovering the semantics
to facilitate the practical usage of the commands. Prior efforts
on protocol semantics recovery rely on either the keywords in
the network traces (e.g., [57]) or the parameters and execution
contexts of well-known APIs (e.g., [41] [25] [24]), and they
mostly focus on desktop applications or malware and cannot
be directly applied in our targeted domain. Interestingly, we
notice that CAN bus commands are often triggered by users
when using the mobile apps, and the UI-rich apps must provide
clues in their user interfaces (e.g., using an unlock door
button to trigger unlock door CAN bus commands). Therefore,
by leveraging the semantics clues in the app, we design an
app code based semantics recovery algorithm to reveal the
semantics of the CAN bus commands.

We have implemented a prototype of CANHUNTER and
applied it to test all of the free car companion apps we were
aware of from both the official iOS and Android app markets in
April 2019. In total, we have 236 apps: 114 for iOS and 122 for
Android. Among them, CANHUNTER successfully uncovers
182, 619 unique CAN bus commands, with 157, 296 of them
(86.1%) uncovered with semantics from 107 (45.3%) apps:
104 third-party dongle apps and 3 official manufacturer apps.
These results cover over 360 popular car models from 21 car
manufactures. For the rest 129 (54.7%) apps, CANHUNTER
identified indirect vehicle control and monitoring related com-
mands from 87 IVI apps and 22 dongle apps (note that these
109 apps do not directly generate CAN bus commands and
instead they rely on cloud servers or dongles to finally generate
the real CAN bus commands), and failed in 20 dongle apps
due to obfuscation.

To validate the correctness of these reverse-engineered
CAN bus commands, we have exhaustively tried all possible
methods we could access and afford, including checking
with public resources (e.g., those from car hacking forums),
cross-platform and cross-app validations, and also real-car
testing. With these methods, we were able to successfully
validate over 70% of the uncovered commands. Specifically,
in cross-platform and cross-app validation, we observe no
inconsistency in command syntactics and semantics, which
implies high effectiveness of CANHUNTER. From public
resources and real-car testing, we discover only 3 (1.2%
among the 241 manually validated CAN bus commands)
false positives in semantics recovery. However, these 3
false positives are actually all caused by mistakes from app
developers instead of CANHUNTER. The rationale of why

CANHUNTER succeeds, and also the countermeasures against
our approach if necessary are also discussed in the paper.

Contributions. The main contributions of this paper are:
• Novel approach. We propose a novel, cost-effective, and

automatic cross-platform reverse engineering approach for
CAN bus commands through analyzing only the companion
mobile apps, without using real cars.
• Effective techniques. We design a suite of new and effective

techniques that uncover CAN Bus command syntactics
with backward slicing and dynamic forced execution, and
infer the command semantics with a novel app code based
semantics recovery algorithm.
• Implementation and evaluation. We implemented CAN-

HUNTER and evaluated it on 236 car companion apps,
and discovered 182, 619 unique CAN bus commands in
which 86.1% of them are recovered with semantics. We
also validate the correctness of over 70% of the recovered
CAN bus commands of their syntactics and semantics using
public resources, cross-platform and cross-app validations,
and real-car testing.

Roadmap. The rest of this paper is organized as follows.
We provide the necessary background related to CAN bus
commands, automotive mobile apps, and the applications of
CAN bus commands in §II. Next, we present a running
example to illustrate the challenges and insights when reverse
engineering the CAN bus commands from mobile apps in
§III. Then, we describe the detailed design of CANHUNTER
in §IV and implementation in §V. In §VI, we present the
detailed evaluation results of the reverse-engineered CAN bus
commands, followed by the discussion on the root causes and
countermeasures in §VII. We review related works in §VIII,
and finally conclude in §IX.

II. BACKGROUND

A. CAN and CAN Bus Command

For a modern automobile, there are approximately
hundreds of Electronic Control Units (ECUs) responsible for
controlling various sub-systems such as steering, acceleration,
braking, doors, and windows. To coordinate these sophisticated
components, the CAN bus is designed for connecting the
ECUs and ensuring that the whole system works properly.
Messages that can be understood by all the components inside
the network are sent back and forth for communications,
which are called CAN bus messages. These messages are
formed with a specific standardized structure [33], which
is presented in Figure 1. Note that the identifier and the
command data in the data field altogether determine the
function of the message, which are commonly used to identify
a CAN bus message. In this paper, we use the term CAN
bus command to represent both the syntactics (i.e., identifier
and format of a command data) and the semantics (i.e., the
human understandable meaning) of a CAN bus message.

The syntactics of a CAN bus command is usually
presented as hexadecimal values, including its identifier and
data. The identifier can be either 11 or 29 bit referring to the
specific ECU that emits the command [33]. The command
data contains various length of bytes ranging from 0 to 8, each

2

Identifier
S
O
F

R
T
R

I
D
E

D
L
C

Byte
0

Byte
1

Byte
2

Byte
3

Byte
4

Byte
5

Byte
6

Byte
7

Data Field C
R
C

A
C
K

E
O
F

Fig. 1: The structure of a CAN bus message.

of which stores the parameter of the command. The semantics
for CAN bus commands can be generally classified into two
categories: (1) control, which operates physical components of
a vehicle such as unlocking doors and starting the engine, and
(2) diagnosis, which queries the data of a vehicle such as speed
and temperature. For each semantic meaning, there is a one-to-
one mapping to a CAN bus command. For instance, for Toyota
Prius, the CAN bus command identifier “0x750” refers to
the main body and “0x7C4” is for the air conditioning.

The specific syntactics and semantics of most of the CAN
bus commands are not standardized, and thus they are defined
privately by car manufacturers to represent various functions
for different car models. This makes CAN bus commands
highly diversified, and even different car models of the same
brand (e.g., Audi A3 and A4) can often have completely dif-
ferent set of commands. For example, the command identifier
“0x3B7” represents engine for BMW E65 but window for
BMW E84, according to the validated commands from a car
hacking forum [20].

B. Automotive Mobile App Ecosystem

Today, there are many automotive related mobile apps
available to consumers. We have investigated car companion
apps on popular mobile app markets such as Google Play
Store and Apple App Store, and found that they all can be
categorized into the following two types according to how they
connect to an automobile.

In-Vehicle Infotainment (IVI) apps. This kind of app is
developed and authorized by the car makers (e.g., Audi,
and Toyota) and is only compatible with specific types of
cars. Typically, they offer remote control capabilities such as
unlocking doors and starting engines. To interact with the
cars, these apps need to connect to the IVI system via either
Bluetooth or cellular network. The IVI system itself, as shown
in Figure 2a, is widely deployed in most of modern vehicles.
The outer interface of an IVI system offers touchscreen for
drivers to interact with the cars to play music, navigate and
so on, while the other side of it connects to the inner network
of the vehicle. To perform remote control functions, IVI apps
typically send requests to a remote server on the Internet, e.g.,
a cloud server, and rely on the server to issue corresponding
commands to the vehicle.

OBD-II dongle apps. In addition to car manufactures, some
3rd-party service providers including many auto-insurance
companies also develop car companion apps to interact with
vehicles through the On Board Diagnostic (OBD-II) port. In
general, these OBD-II dongle apps (short as dongle apps)
connect to a dongle plugged into the vehicle, and these OBD-
II dongles work like wireless sensors connecting to the OBD-
II dongle apps via Bluetooth, Wi-Fi, or cellular network and
at the same time, directly communicate with the inner CAN

(a) An IVI System (b) An OBD-II Dongle

Fig. 2: An IVI system and an OBD-II dongle.

of the vehicle [59]. A typical OBD-II dongle is shown in
Figure 2b. There are different types of dongles on the market.
Some of them are compatible with different automobiles (e.g.,
dongles provided by auto-insurance companies), and only
provide diagnosis or monitoring functions based on a set
of standardized OBD diagnostic protocols. Other ones are
designed for specific types of automobiles, offering not only
diagnosis capabilities but also remote control functionality.
Similar to OBD-II dongles, dongle apps also have different
types, with some designed for many different dongles such as
DashLink, EOBD-Facile, and AutoDoctor, and others only for
specific dongles such as Carly, Carista, and FIXD.

C. Applications of CAN Bus Commands

CAN bus commands are essential to many applications
including but not limited to:
• Remote control. CAN bus commands can be used by

mobile apps to offer remote vehicle control, which pro-
vides great convenience for users to remotely operate their
vehicles such as locking doors and closing windows. For
example, we find various car companion apps such as
Carista, BimmerCode, and OSCC [17] that interact with
vehicles by sending remote control CAN bus commands.
• Vehicle diagnosis. CAN bus commands are also used for

vehicle diagnosis and inspection such as monitoring the
status of vehicles including reading parameters like fuel,
pressure, and speed. For instance, we have noticed that
various apps and dongles are developed for this purpose,
including those mentioned in §II-B.
• Security monitoring. CAN bus commands are

also widely used in developing CAN bus firewalls
(e.g., [35] [48] [47] [44] [28]), to prevent malicious
message from being injected into the CAN bus. Without
the knowledge of each specific CAN bus command, the
security monitoring system would not work properly.
• Vehicle hacking. Since CAN bus commands are essential

for vehicle control and diagnosis, they can be leveraged to
perform attacks on automobiles [44] [45] [46]. For instance,
by injecting the corresponding CAN bus commands to an
IVI system, Miller and Valasek [46] demonstrated how to
shut down the engine of a Jeep Cherokee. Generally, for an
attacker with little knowledge about the CAN bus protocol,
she could interfere the control of a vehicle by sending
random CAN bus messages. However, in order to achieve
desired attack consequences on a vehicle, such as shutting
down the engine or unlocking doors, one must know the
precise CAN bus commands of interest in advance.
• Autonomous driving. CAN bus commands are also crucial

for the development of autonomous driving nowadays.

3

We have examined the source code of the three notable
autonomous driving software: ApolloAuto [2], Autoware [7]
and Openpilot [16]. We noticed the only software interface
that interacts with the vehicles is the corresponding CAN
bus commands, such as braking, steering, acceleration, and
checking tire pressure and fuel. Since CAN bus commands
are diversified across vehicle models, ApolloAuto [2] only
supports Lincoln MKZ, and Autoware only supports a
few models such as Toyota Prius. At this point, these
state-of-the-art autonomous driving software platforms can
only support a very limited set of car models, which is
partly due to the lack of the knowledge of the CAN bus
commands for other car models [21].

III. OVERVIEW

A. Running Example

To understand clearly the challenges we have to address,
we present a running example from an iOS dongle app called
Carly f.Toyota to show exactly how a CAN bus command is
generated and used. This example is illustrated in Figure 3
with a piece of decompiled code and also the UI component
of the app. In particular, the UI shows a button titled “Engine
Controls”, which guides users to check the status of the en-
gine control units of the vehicle. To achieve such functionality,
the app must send a specific CAN bus command to the vehicle
and fetch data from it. When the button is clicked, the control
flow goes to the triggering function where a constant string
“0x7E0” is initialized (line 4). Then, the string goes through
a series of operations and a complete CAN bus command
syntactics “7E0 30 00 02” is produced (line 19). Finally,
the command is sent to the vehicle through a low-level API
writeValue (line 42).

This example helps us better understand how the syntactics
and semantics of a CAN bus command can be inferred. Since
the CAN bus commands eventually will be captured by a
specific network API and sent to the vehicle, we can adopt a
known backward slicing algorithm that starts from these low-
level APIs and traces back to locate the commands. Then we
can follow the execution to recover the syntactics of the com-
mands. Interestingly, the semantics and the car model informa-
tion (if an app supports multiple cars) can also be inferred. In
this example, the string “Engine Controls” appears in the
text of the UI button (line 14) as well as the argument of func-
tion call initWithRequestId("0x7E0", "Engine
Control") (line 4). The constant string “Corolla VIII”
is also integrated as an argument of function initWithName
(line 13), associating the command with the car model
Corolla.

B. Technical Challenges

While the motivating example in Figure 3 concretely
illustrates the potential of leveraging car companion apps for
CAN bus command reverse engineering, how to systemically
perform such reverse engineering is still non-trivial. More
specifically, we notice there are still three key technical chal-
lenges we have to address:

Precise identification of the generation path. For car com-
panion apps, there is neither standard guidance nor unified

MD_AllECUsToyota.initECUs()
...
4 v12.initWithRequestId(“0x7E0”,”Engine Controls”)

// v12.frageID = ”0x7E0”
...
13 v22 = BaseFahrzeug.initWithName(“Corolla VIII”)
14 v22.addECU(v12) // v22.ECU = v12
...
25 v25 = v24.createWorkableECUKategorie(v22)

WorkableModell.createWorkableECUKategorie(a3)
...
12 v6 = a3
13 v7 = v6.ECU.frageID // “0x7E0”
...
18 v8 = v7.substring(2,5) // “7E0”
19 v9 = NSString.stringWithForamt(“%@ 30 00 02”,v8)

// “7E0 30 00 02”
...
30 v10 = v9.dataUsingEncoding(4)
31 v11 = v10.bytes()
...
42 v5.writeValue(v11,v14,1) // Targeted API that

sends data to the vehicle

Screen_Info_Diag.viewDidLoad()
...
13 v4 = UIButton()
14 v4.setText(“Engine Controls”)
...
27 v4.addTarget(v4,”initECUs”)

// register button trigger function

Invoke

Fig. 3: A motivating running example illustrating the genera-
tion of a CAN Bus command in a dongle app.

programming interfaces for developers to construct a CAN bus
command. Thus, each car companion app is actually highly
customized in the construction logic due to different coding
practices. However, to perform our reverse engineering task,
identifying the CAN bus command generation path at the car
companion apps code level is a necessary step. As a result,
how to design a general and systematic solution for such
identification is the first challenge.

Automatic syntactics recovery. After identifying the genera-
tion path, the operations along the path need to be executed
in order to recover the corresponding CAN bus command
syntactics. To perform such a task, a known challenge is
automatic preparation of the required execution context, e.g.,
internal program states such as user account, and external input
such as those from user or network [42] [29]. Specific to
car companion apps, we find that all the ones we collected
(detailed in §VI) require successful network connections with
actual IVI systems or OBD-II dongles before their vehicle
control functions can be accessed. In addition, even with
network connections, the majority of them is found to require
user authentication or vehicle authentication, e.g., by providing
a valid VIN number. Since many of these inputs are difficult
to obtain without access to actual hardware such as real cars,
the context preparation task for car companion apps become
difficult to automate.

Automatic semantics recovery. To complete the reverse
engineering process, in addition to the CAN bus command
syntactics, we also need to extract the associated semantics,
e.g., “Engine Controls” in Figure 3. In prior works
on protocol semantics recovery (e.g., [24] [25] [57] [38]),
dynamic network traces are needed in the recovery process.
However, without real cars or dongles to generate network
traffic, these prior solutions cannot be applied directly to car
companion apps. Another possibility is to find out the seman-
tics from the documentations of the vehicle control APIs used
in the generation path. However, no such unified programming

4

interfaces exist today for vehicle control behaviors in car
companion apps.

C. Key Insights

Fortunately, in this work we are able to identify the follow-
ing insights to address each of the challenges described above:

Backward program slicing. To identify CAN bus command
generation path, a key insight is that no matter how these
commands are generated, a car companion app will always
send out them to the vehicles through network interfaces, e.g.,
WiFi and Bluetooth, by design. Therefore, we can first locate
the standardized network APIs and then use a well-known
program slicing algorithm to trace backward from these APIs
to find all the code-level operations related to the generation
of CAN bus commands. Such a backward slicing based
technique has been widely in mobile app analysis including
our own prior works (e.g., [63] [64]). Another approach to
solve this problem is using forward data flow analysis which
starts from UI components and traces to the network sinks.
However, the backward slicing approach is preferred for two
reasons. First, the backward approach is more precise, since
the forward approach explores more program paths including
those irrelevant to CAN bus commands generation. Second, the
backward approach can discover more CAN bus commands
that are not triggered by the UI. For example, as discussed
in §VII, many commands we discovered are never used in
the app (e.g., some dead code) and are possibly left there for
debugging during the app development.

Dynamic forced execution. As described earlier, it is indeed
very difficult to prepare the proper execution context of car
companion apps, e.g., network connections and user/vehicle
authentications. However, we find that the actual construction
process of the CAN bus commands is usually independent
from external input, after the checking logic of these opera-
tional contexts. One such an example is illustrated in Figure 3.
This is very likely because CAN bus commands are hex strings
and car companion apps can hardly rely on end users to
directly enter them, and instead they are embedded in the app
code somewhere and rely on human beings to trigger them.
Such triggering operations would also not require sophisticated
input from users (typically through buttons, lists, and clicks)
in mobile apps.

Therefore, this creates a unique opportunity to
adopt a widely explored technique called forced
execution [60] [50] [36] [37] [34], which is designed
for brute-force executing certain part of a program without
providing concrete inputs or setting proper environment.
While this technique normally has limited effectiveness since
it does not consider the execution contexts (e.g., the heap
has to be properly modeled, otherwise it will often lead to
crashes [50]), such limitation does not affect our problem
due to the independence of CAN bus command generation
on external input. Thus, by adapting this technique to our
problem context, we can achieve automatic and effective
syntactics recovery without any real car or dongle connection.

UI and function argument assisted semantics recovery.
Since we cannot directly use existing protocol semantic infer-
ence approaches with desktop programs (e.g., [24] [25] [57]),

we have to look for potential clues inside the app code for
our semantics recovery. Encouragingly, we have identified a
few common patterns with semantic information inside the app
code. In particular, we find that car companion apps typically
contain strings that are visible in the app UI to inform users
about the semantic meanings of the vehicle control functions.
For example, the CAN bus command generation path is associ-
ated with the UI element “Engine Controls” in Figure 3.
As such, we can recover the semantics of a given CAN bus
command by tracking the association of its generation logic in
the app code with the corresponding strings in the UI elements.

In addition, we also find that functions in car companion
apps often take both a string parameter and a CAN bus com-
mand together in the generation path. For example, at line 4
in Figure 3, where both “0x7E0” and “Engine Control”
are passed as parameters to function initWithRequestId.
Thus, we can then use an association heuristic to infer the
semantic meanings of the generated CAN bus command from
this function. In the car companion apps we collected in §VI,
we find this type of argument association widely exist (about
30% of the apps that have CAN bus commands), which very
likely is implemented for logging and debugging purposes.

Based on these observations, we therefore design a app
code based semantics recovery algorithm that analyzes such
semantics clues in car companion app code, e.g., from UI
elements and function argument associations, to automatically
recover semantics of a CAN bus command.

D. Scope and Assumptions

In this work, we focus on car companion apps from the
two mainstream mobile app platforms namely Android and
iOS, from their corresponding official app market namely the
Google Play Store and the Apple App Store. We assume that
these apps are not obfuscated, such that they can be disas-
sembled and decompiled by the state-of-the-art analysis tools
such as IDA-Pro [14] and Soot [19]. The implementation of
CANHUNTER also assumes car companion apps send out CAN
bus commands through Wi-Fi, Bluetooth, and Bluetooth Low
Energy (BLE), and thus focuses only on the data transmission
APIs of these channels.

IV. DESIGN

The workflow of CANHUNTER is presented in Figure 4. At
a high level, CANHUNTER is divided into three components:
backward slicing (§IV-A), syntactics recovery (§IV-B), and
semantics recovery (§IV-C). It first takes the binary code of
a mobile app as input, disassembles and decompiles it, and
produces the execution paths through backward slicing of the
decompiled code. Then, it uses dynamic forced execution to
run the apps with the execution path of interest, from which
to uncover both the syntactics and semantics of CAN bus
commands. In this section, we present the detailed design of
each of these components.

A. Backward Slicing

Since not all the code in a mobile app contributes to the
generation of CAN bus commands, we use backward slicing
to identify the code path of our interest such that our analysis
can be performed efficiently. Backward slicing needs to begin

5

Syntactics

Apps

Backward Slicing
Semantics

Execution
Path

Static Analysis Dynamic Forced Execution

Syntactics
Recovery

Semantics Recovery

UI Correlation Function Argument
Association

Fig. 4: Overview of CANHUNTER.

Algorithm 1: Backward slicing
Input : F : current block name, V : a set of target variables, G: the

CFG of F
Output: A node containing the block name and instructions

1 Function recursiveSlice(F, V)
2 S ← ∅
3 for each stmt i ∈ G do
4 if i is a relevant statement of any variable in V then
5 if i is a programmer-defined function then
6 V ′ ← target variable set of function i
7 S ← recursiveSlice(i, V ′).S ∪ S
8 else
9 if i contains externally defined variables then

10 for each external variable setter function F’
do

11 V ′ ← target variable set of F’
12 S ←

recursiveSlice(F ′, V ′).S ∪ S
13 end
14 S ← i ∪ S
15 V ← V removes the target variables in i
16 V ← V ∪ all local variables in i
17 end
18 end
19 end
20 node← Node(F, S)
21 for each caller F’ of F do
22 V ′ ← set of target variables in the caller
23 node.addChild(recursiveSlice(F ′, V ′))
24 end
25 return Node(F, S)

from some low-level interfaces. To identify these entry points,
we find that CAN bus commands are usually sent to vehicles
from apps through wireless network such as Bluetooth and
Wi-Fi which have fixed low-level network APIs. Therefore,
the backward slicing algorithm in our targeted domain first
identifies these documented interfaces and initializes a set
of target variables which carry the data to be sent (i.e., the
data-use). Then, it backward iterates the decompiled program
statements (examples of such statements are shown in Figure 3)
and produces the execution paths according to how the target
variables and their closures are generated (i.e., trace back to
the data-definition).

The pesudocode of how CANHUNTER generates the
backward slice S of a function block F with a given target
variable set V is presented in algorithm 1. The set V is
path-sensitive where each control flow path maintains its own
copy of variable set and propagates it backward. Initially, the
algorithm takes F , V and the control flow graph (CFG) G of
F as input, and sets the slice S as empty (line 2). To begin
with, the algorithm backward iterates each statement i in G
(line 3-19) and checks if i is a statement affecting the value
of any variable in set V (line 4). If so, it is regarded as a
relevant statement. For these statements, the algorithm further

detects whether i is a programmer-defined function. If so, the
algorithm recursively jumps into it to slice that function and
finally appends S with the returned slice (line 5-7). Otherwise,
i is either a standard library function call or a basic operation
(e.g., numeric operation or assignment), and the algorithm
detects if there is any externally defined variables (e.g., global
variables) in i. If so, it further backward slices the external
variable setter functions to find out the data definitions of
these variables (line 9-13). Finally, it records statement i into
S, and removes all target variables in i and adds all other
local variables in i into the trace set V (line 14-16).

After the algorithm traverses all the statements in G, some
of the target variables in V may flow into the previous block.
In this case, the algorithm continues to trace them in the
callers to see how they are generated (a context-sensitive inter-
procedural analysis). To achieve this, we first initialize a node
containing the current block information including the block
name and the program slice S (line 20), and properly set
up another target variable set V ′ which indicates the target
variable locations in each caller (line 22). Then a recursive call
of itself is invoked on each of the caller F ′ with V ′ (line 23).
Eventually, the algorithm produces a node which is marked by
the block name F and its slice S (line 25), which has multiple
children nodes returned from the recursive call of the callers
F ′. Ultimately, after an initial call on callers of the network
API, the algorithm generates all the program slices on the CAN
bus command generation paths.

During the slicing, it is important to make sure the resulting
program slices do not miss any statements that generate the
data of our interest. We therefore consider both data depen-
dence and control dependence in our slicing:
• Data dependency. It is quite a standard procedure to

identify the data dependency, based on how data is used and
defined. With G of F , we backward iterate each statement
starting from the statement of our interest: if a variable used
belongs to V , or a variable in V gets defined, we add it to
the target set and the statement into the slice S.
• Control dependency. As our objective is to identify all

possible entry points such that our forced execution can
exercise them, our algorithm considers control dependencies
in order to conservatively include all the possible cases. This
process is also quite simple. Specifically, when encountering
branches and loops, there are conditions which are relevant
to the variables in set V . As such, we add the condition
statement into the slice S, and all the variables in the loop
or branch body are included in V as well.

Execution path generation. The backward slicing generates
a tree-based structure including the execution paths of CAN
bus commands. Each node of the tree represents a block
and contains its program slices. The leaf nodes of the tree

6

represent the blocks where the algorithm terminates, which
means the target variables are initialized without introducing
extra dependencies. We call the leaf node as execution point
where the forced execution starts. The root node of the tree
refers to the target low-level network API. From each of the
leaf node to the root, there must be a path which generates a
message that sends out through a network API. Therefore, we
traverse the whole tree from the leaf to the root recursively
using depth-first traversal, and construct the execution paths
by joining the program slices of each node.

B. Syntactics Recovery

The recovery of syntactics is to compute the concrete value
of CAN bus commands, which is achieved through forcefully
executing the instructions involved in the execution paths.
Since the instructions are independent of external inputs, they
can be directly executed. Specifically, the execution starts from
the leaf nodes of the tree and finally ends in the root. Within
each node representing specific blocks, the algorithm executes
each instruction based on the order they appear in the slice. The
forced execution is performed dynamically on a real mobile
device running a car companion app. Each invocation of the
network sending APIs generates a CAN bus command through
our dynamic forced execution. We log this command and keep
its value (which implicitly captures the structure and format)
as its syntactics.

We have to note that our design is general and we may
identify other non CAN bus commands. For instance, we
also observe some AT commands [54] that are sent from
mobile apps to OBD-II dongles, and some privately defined
commands (e.g., human-readable strings or decimal numbers)
sent to IVI systems or remote clouds. Fortunately, as we have
described in §II, a CAN bus command always has a distinct
structure [33], which thus enables us to easily filter those that
are inconsistent with the defined structure.

C. Semantics Recovery

During the syntactics recovery of CAN bus commands
through forced execution, CANHUNTER also infers their se-
mantics and also vehicle model information when available.
As discussed in §III, there is no accurate way to uncover the
semantics of the CAN bus commands, and thus we design a
semantics recovery algorithm based on our empirical obser-
vations: the semantic meaning of a CAN bus command often
appears as a constant string in the app code, and these strings
will not be recognized or used by either the OBD-II dongles
or the CAN inside the vehicles. The reason for developers to
integrate these human-understandable semantics into the car
companion apps is to help users associate the CAN bus com-
mands with the related functionalities. As such, our semantics
recovery algorithm uses the following two heuristics: (i) the UI
component correlation and (ii) function argument association,
to infer the semantics of CAN bus commands.

(I) UI component correlation. Users often trigger car related
operations with UI components such as buttons in the car
companion apps. The texts of the UI components are helpful
for guiding them to the specific operations. For instance, a
button titled “Reading Speed” triggers a speed reading
command sent to the vehicle, and then the app will fetch the

data and display it to the user. During backward slicing, the
algorithm terminates when it reaches all the data definition
points. At this time, the semantics recovery algorithm con-
tinues to trace backward from the data definition to find the
associated UI elements. Then, CANHUNTER extracts the texts
of these elements as the command semantics.

(II) Function argument association. The semantics of the
CAN bus commands are also likely to be exposed by function
calls with their arguments. For instance, as in the function
call initWithRequestId ("0x7E0", "Engine
Controls") of Figure 3, the CAN command syntactics
“0x7E0” appears together with a constant string “Engine
Controls” (the semantics) as an argument. Interestingly, this
technique is also useful for recovering car model information.
Due to the diversity of CAN bus commands, we notice app
developers often integrate car model information as arguments
to help themselves distinguish the CAN bus commands from
different manufacturers. To infer the model information, we
cross-compare the extracted arguments with a pre-built set of
all vehicle models. Therefore, when executing a function call
instruction, CANHUNTER dynamically extracts the constant
string arguments of the function calls associated with the
command to infer the semantics and model information.

V. IMPLEMENTATION

We have implemented CANHUNTER1 for both Android
and iOS platforms with 3, 000 and 2, 000 Lines of Code,
respectively. In this section, we describe the implementation
details on how we identify the target APIs, perform both static
analysis and dynamic forced execution, as well as how we
handle the native library issue.

Target API identification. To start the backward slicing,
we focus on two categories of low-level APIs defined by
Google’s and Apple’s official SDKs, which may take CAN bus
commands as parameters. Since car companion apps usually
interact with vehicles via wireless network, the first category
is the BLE API (setValue in Android and writeValue
in iOS). These APIs are provided by the official frame-
work [6] [3] for developers to implement communication
between an app and the peripheral following the BLE stan-
dard. Besides BLE, CAN bus commands can also be trans-
mitted through Wi-Fi or Bluetooth Classic. Consequently,
the second category of low-level APIs includes the socket
APIs such as write for both Android and iOS, and the
HTTP APIs such as openConnection for Android, and
dataTaskWithRequest for iOS.

Backward slicing. The backward slicing of CANHUNTER is
implemented based on IDA-Pro [14] and IDAPython (for iOS)
as well as Soot [19] (for Android), targeting decompiled Soot
IR or Objective-C code. As the two of the most popular static
analyzers for Android and iOS, they both provide rich APIs
for basic program analysis such as decompilation, building
call graph, and locating function callers, which allows us
to easily perform static backward slicing of the app code
to trace the variables from the target APIs. In addition,
they support programming language binding so we are able

1The source code is available at https://github.com/OSUSecLab/CANHunter

7

https://github.com/OSUSecLab/CANHunter

to develop scripts based on Java and Python to automate
the static analysis. Furthermore, we also implemented multi-
threading to analyze various executables simultaneously, which
significantly accelerates the reverse engineering process.

Dynamic forced execution. The implementation of forced
execution is based on Cycript [8] and Frida [12] which are
dynamic code instrumentation toolkits compatible with various
platforms including Android and iOS. They provide JavaScript
interfaces that allow us to dynamically execute the instructions
instead of implementing the execution process by ourselves.
To achieve automatic execution, we use the Python binding
to automatically load each instruction in the execution path
and generate a snippet that is injected into the running app
to execute these instructions. The environment is set up by
connecting our PC to an Android device or a jail-broken
iPhone through SSH and hooking the running app process.

The dynamic forced execution may lead to abnormal
behaviours and even crashes. Therefore, we added exception
handling rules to make sure it can automate without human
intervention. When the app crashes or does not respond,
CANHUNTER restarts the app and retries the instruction when
a timeout limit is reached. Our implement of the exception
handling is also based on Frida, which enables CANHUNTER
to automate the operations on the attached process without any
human intervention.

Handling native libraries. It is common for developers to
integrate native libraries in their apps due to its convenience
for developing cross-platform apps. A typical example is the
.so library written in C/C++. In addition, since these libraries
are more difficult to reverse engineer, developers can hide
important code and data in them. However, with such native
libraries used in apps, CANHUNTER is not able to directly
construct a complete function call graph when tracing back to
the UI components to recover the semantics of the CAN bus
commands. Therefore, we designed a solution which enabled
CANHUNTER to successfully recover the semantics of over
50% of all the commands. Specifically, we have to address two
additional challenges when using disassemblers in IDA Pro to
statically disassemble and analyze the native binaries in both
Android and iOS platforms.
• Locating callers of virtual functions. In the native binaries,

the invocation of a virtual function is through referencing
the virtual function pointer in its virtual function table. To
achieve this, the assembly code first loads the address of
the virtual function table, and computes the virtual function
address by adding an offset value. Therefore, the caller of
a virtual function cannot be directly inferred. To solve this
issue, CANHUNTER starts by finding the virtual function
table address based on the virtual function pointer, and
then it scans through all the references of the table address
and checks which virtual function is called to eventually
locate the actual caller of the virtual function.
• Associating the native code with the app code. For iOS

apps, the native code is mixed with the Objective-C code
so their association can be explicitly inferred in the same
binary. However, for the Android apps, the Java byte code
and the libraries are separated, and the invocation of native
functions is through the Java Native Interface (JNI) from the
Native Development Kit (NDK) [1]. In this circumstance,

Total # Diagnostic App (%) # IVI App (%)

Android 122 74 (60.7%) 48 (39.3%)
iOS 114 72 (63.2%) 42 (36.8%)

Total
236 146 (61.9%) 90 (38.1%)(Android ∪ iOS)

Overlapped apps
79 38 (48.1%) 41 (51.9%)(Android ∩ iOS)

TABLE I: Distribution of collected car companion apps.

CANHUNTER recognizes the native functions in Java byte
code and associates them with the related ones in the native
code according to the function signatures. Afterwards,
CANHUNTER constructs the function call graph of the
native binaries and then associates the native functions with
the app code, which thus establishes a complete call graph.

VI. EVALUATION

A. Experiment Setup

Car companion app collection. To perform our evaluation,
we have crawled all of the free vehicle related apps we were
aware of from both the official Apple App Store and Google
Play Store in April 2019. Specifically, we used a crawler to
start from some known keywords (such as OBD-II, IVI, and
vehicle mobile apps) and exhaustively collect apps from the
relevant app pages. Then, we manually confirmed each crawled
app to make sure they are vehicle related (for instance, we can
further filter those dongle manual apps that never interact with
a vehicle, or general dongle terminal apps that just provide
a terminal for expert users), and meanwhile classify them
according to the types described in §II. In total, we eventually
collected 122 and 114 car companion apps from Android and
iOS platform respectively, including 146 dongle apps and 90
IVI apps. Table I shows the distribution of these apps. Note
that there were also 71 paid apps on both app markets, but
we did not collect them due to our budget constraints.

Experiment environment. We ran the static analysis with the
236 tested apps on a 10.14 MacOS MacBook Pro with six
Intel Core i7 CPU and 16GB RAM as well as a Linux server
running Ubuntu 16.04 equipped by twelve Intel Core i7-8700
CPUs and 32 GB RAM. The dynamic forced execution is
performed on a Google Nexus 4 with Android 7.0, as well as
a jail-broken iPhone 6 with iOS 10.3.3.

B. Experiment Result

In total, CANHUNTER discovered 182, 619 CAN bus com-
mands2 from 107 out of the 236 apps we tested. Among them,
157, 296 commands (86.1%) are recovered with semantics.
Although not all the commands are recovered with semantics,
we would like to emphasize that the automatic syntactics
recovery provided by CANHUNTER is already useful since it
can accelerate the reverse engineering process compared to
existing approaches that rely on manual efforts or fuzzing to
construct CAN bus commands in real car testing [13] [38].
Note that CANHUNTER also discovered standardized CAN
bus commands called OBD PIDs [53] which are for diagnostic
purposes and are ubiquitous in the diagnostic apps. Since these

2The reverse engineered commands are also available at https://github.com/
OSUSecLab/CANHunter.

8

https://github.com/OSUSecLab/CANHunter
https://github.com/OSUSecLab/CANHunter

App Name
Backward Slicing Forced Execution Semantics Recovery

Size # Commands Car Model Semantics Slicing # Branches Execution # Instr. By UI By Function
(MB) Recovered Recovered Cost (s) Cost (m) % Argument %

Dongle apps:
Carista 12 8 105,198 105,198 100% 100% 100% 100% 343 729 105,301 105,301 71 78 257,673 257,673 26% 26% 74% 74%
Carly for VAG 58 18 18,627 16,402 44% 66% 61% 56% 153 512 19,236 17,638 31 28 112,313 105,137 100% 10% 0 90%
Carly for BMW 67 38 14,377 16,427 100% 100% 100% 100% 125 502 15,132 18,898 27 29 97,354 113,494 100% 0 0 100%
Carly for Toyota 50 19 5,305 39 100% 99% 100% 100% 64 235 6,405 706 7 11 23,741 4,034 100% 100% 0 0
Carly for Renault 47 18 5,199 1,255 100% 96% 0 3.5% 50 197 5,284 1,384 8 15 30,189 5,557 0 100% 0 0
Carly for Mercedes 51 20 7,921 1,698 82% 79% 100% 100% 88 203 8,021 1,704 9 14 32,437 4,878 0 0 100% 100%
Carly for Porsche 46 18 1,963 278 100% 97% 0 0 17 155 2,122 384 1 4 4,234 1,521 0 0 0 0
BimmerCode 4 2 0 42 0 100% 0 100% 4 15 20 90 0 3 78 986 0 100% 0 0
BlueDriver 24 8 304 304 100% 100% 100% 100% 27 64 313 313 1 4 1,245 1,360 100% 100% 0 0
CarVantage 87 15 41 41 0 0 0 0 21 24 45 45 1 1 48 0 0 0 0 0
ANCEL 26 3.7 1 16 0 0 0 94% 14 11 41 34 1 1 101 292 0 60% 0 40%
CHIPOBD 10 3 0 29 0 0 0 76% 1 19 0 70 0 3 0 1,004 0 0 0 100%
Dr.OBD 4 2 0 2 0 0 0 100% 0 2 0 23 0 1 0 328 0 0 0 100%
inCarDoc 15 18 160 160 0 0 0 100% 39 50 251 251 1 7 2,555 2,273 100% 100% 0 0
iOBD2 57 5 5,007 218 0 57% 100% 100% 47 84 5,034 240 3 5 12,304 1,684 0 4% 0 96%
Kiwi OBD 7 4 220 6 0 0 100% 100% 23 20 227 227 1 1 252 260 100% 100% 0 0
MOSX 6 6 13 4 0 0 100% 0 9 9 71 25 1 1 280 127 100% 100% 0 0
OBDPlus 8 18 0 24 0 0 0 100% 0 22 0 92 0 1 0 558 0 0 0 100%
OBD Mate 34 4 1 11 0 0 0 100% 17 11 42 34 3 1 104 29 0 55% 0 45%
SekurTrack OBD 5 2 10 18 0 0 100% 100% 13 11 57 46 1 1 765 410 100% 100% 0 0
Spinn 26 6 0 32 0 0 0 32% 0 11 0 14 0 1 0 60 0 0 0 100%
Engie 28 11 144 68 0 0 100% 100% 40 30 98 15 1 1 1,540 170 100% 100% 0 0
Easy OBD 3 1 28 5 0 0 100% 82% 13 10 50 18 1 1 542 108 100% 100% 0 0
Savy Driver 65 21 15 0 0 0 0 0 22 1 227 1 1 0 1,040 2 0 0 0 0
DashLink 44 28 5 0 0 0 100% 0 107 1 9 4 2 0 2,361 11 60% 0 40% 0
Car Scanner 51 31 4 0 0 0 0 0 43 1 14 1 1 0 386 2 0 0 0 0
DashCommand 8 47 3 0 0 0 33% 0 8 1 112 4 1 0 195 11 100% 0 0 0
SekurLot 8 2 2 0 0 0 50% 0 4 0 52 0 1 0 121 0 100% 0 0 0
IVI apps:
HondaLink 49 8 0 52 0 100% 0 100% 14 19 108 83 0 2 2504 716 0 0 0 100%
HondaLink Aha 12 5 0 52 0 100% 0 100% 23 14 60 80 0 2 278 666 0 0 0 100%
Land Rover Comfort 21 3 0 19 0 100% 0 100% 18 11 183 98 1 1 1058 106 0 0 0 100%

TABLE II: Experiment results from CANHUNTER for the car companion apps available on both Android and iOS platforms
(overlapped apps that have CAN bus commands). Numbers on the left are for for Android and on the right are for iOS.

commands are well-documented and have distinct features with
reserved identifiers, we are able to distinguish them from the
non-standardized CAN bus commands. Overall, these docu-
mented OBD PIDs take up approximately 15% of our results,
while the rest 85% are customized CAN bus commands.

Among the 107 car companion apps that have CAN bus
commands recovered by CANHUNTER, interestingly 49 of
them exist in both Android and iOS platforms (with the same
app name). The distribution of the reverse-engineered CAN
bus commands from these car companion apps is presented
in Table II, which summarizes the statistics of CAN bus
command syntactics and semantics recovered from each app,
as well as the detailed intermediate running statistics including
the cost of backward slicing, dynamic forced execution, and the
total number of branches and instructions. For the remaining
58 apps that are available on only one of the Android and
iOS platforms, their results are presented in Table III.

1) Result Characteristics by App Categories: Among
the 107 car companion apps that expose CAN bus commands,
only 3 of them are IVI apps while the other 104 are dongle
apps. There are some interesting findings on these apps
described as follows:

IVI apps. The 90 IVI apps in our experiment indeed
provide remote vehicle control functions, but we find that
CANHUNTER produced CAN bus commands from only 3 of
them. For these three apps, we discover that their developers
accidentally integrate the CAN bus commands into the apps,
because these commands in fact can never be triggered and
sent out from the app, though CANHUNTER is able to find
them from the network APIs. We further investigated all
other IVI apps and find that this is actually not due to the

false negatives of our system. In fact, the IVI apps do not
directly generate CAN bus commands for the supported
control functions on the app side, but rely on a third entity to
interpret the requests to CAN bus commands. Particularly, a
majority of them is found to first send the control commands,
usually in the form of constant strings such as “UNLOCK” for
door unlocking, to a cloud server, and rely on the connection
between the cloud server and the vehicle to control it. In this
paper, we call this type of commands interpreted commands.
Among the 90 IVI apps, we found that 82 (91.1%) of them
adopt this design. For car companion apps with such a design,
it is impossible to recover CAN bus commands directly by
only analyzing the mobile apps without using the actual
cars or at least the actual IVI units. For the rest 8 IVI apps,
CANHUNTER did not detect any obvious interpreted string
commands and instead detected the URLs for each particular
type of commands in the cloud server which will eventually
inject the CAN bus commands to the vehicles.

Dongle apps. Among the 146 dongle apps, CANHUNTER was
able to discover CAN bus commands from 104 (71.2%) of
them, which shows that it is much more common for dongle
apps to directly construct CAN bus commands on the app
side than IVI apps. We also investigate the reasons for the
remaining 42 dongle apps, and find that 22 of them also adopt
the design of interpreted commands for CAN bus command
construction. Specifically, the OBD-II dongles compatible
for these apps are specially designed to translate control
request strings from the dongle apps to CAN bus commands.
For the rest 20 apps, CANHUNTER did not identify any
commands due to obfuscation (i.e., anti-analysis techniques)
that prevented our analysis from building a complete CFG in
the backward slicing step.

9

App Name Size (MB) #Commands
Backward Slicing Forced Execution Semantics Recovery

Car Model Semantics Slicing # Branches Execution # Instr. By UI By Function
Recovered Recovered Cost (s) Cost (m) % Argument %

Android apps:
Obd Harry Scan 5 141 0 100% 19.3 54 0.13 482 100% 0
WEG Motor Scan 12 105 0 100% 14.41 244 0.73 2,638 100% 0
Dr. Prius / Dr. Hybrid 2 31 0 100% 17.65 170 3.00 10,798 0 100%
AlfaOBD Demo 32 27 0 0 211.12 269 1.13 4,058 0 0
Zyme Pro 15 12 0 66.7% 20.51 56 0.06 227 100% 0
OBDmax 6 12 0 25% 20.4 199 0.17 596 100% 0
OBD2 Scaner 6 9 0 0 20.68 84 0.17 604 0 0
Vyncs 24 8 0 0 35.28 229 0.38 1,350 0 0
Torque Lite 6 8 0 100% 14.94 147 0.13 470 100% 0
StarLine 25 8 0 100% 34.51 141 1.55 5,587 100% 0
OBD ECU Access Tester 0.3 7 0 100% 0.9 14 0.02 69 100% 0
CarSys Scan 4 6 0 16.67% 25.86 67 0.04 161 100% 0
Obd Arny 3 5 0 0 15.65 60 0.1 367 0 0
OBD Boy 5 5 0 0 20.43 52 0.09 334 0 0
Best Top NH OBD II 2018 15 5 0 20% 8.1 35 0.06 231 100% 0
GPS7 CLIENTE2 7 4 0 0 5.56 28 0.05 162 0 0
Auto Agent 31 4 0 0 21.7 375 1.34 4,826 0 0
FAPlite Citroen/Peugeot OBD2 3 4 0 0 16.54 72 0.07 254 0 0
RYKA GPS Track 4 4 0 0 9.75 66 0.04 157 0 0
MotorData OBD Car Diagnostics 10 4 0 0 8.11 22 0.04 146 0 0
Clear And Go 4 4 0 0 20.33 35 0.06 233 0 0
OBD Driver Free 3 4 0 0 13.88 150 0.81 2,908 0 0
OBD II SYSTEM 15 4 0 0 8.75 26 0.03 119 0 0
OBDeleven PRO 25 4 0 0 25.41 75 0.11 405 0 0
OBD JScan 38 4 0 0 11.36 74 0.11 411 0 0
ChevroSys Scan Free 4 4 0 0 52.52 17 0.04 136 0 0
PHEV Watchdog 5 4 0 0 15.95 93 0.1 354 0 0
OBD Codes 4 4 0 0 8.32 65 0.05 175 0 0
Volvo Penta Easy Connect 37 4 100% 0 15.96 74 0.09 335 0 0
AutoNiveau 1 2 0 100% 4.64 7 0.11 386 0 100%
Bosch Mobile Scan 45 1 0 0 8.69 75 0.16 583 0 0
Piston 2 1 0 0 6.07 8 0.01 30 0 0
U-Scan 44 1 0 0 7.4 43 0.1 365 0 0
UltraGauge 4 1 0 0 5.11 45 0.18 651 0 0
Garage Pro 10 1 0 0 20.51 56 0.06 227 0 0
Fuel Economy for Torque Pro 6 1 0 0 20.74 118 0.47 1,709 0 0
iOS apps:
Carly for Partners 35 809 89% 100% 297.48 1,858 20.82 7,495 100% 0
Car2Mobile 2 2 0 100% 0.42 4 0.53 12 100% 0
DrivePro OBD 7 160 0 100% 17.33 245 3.28 1,020 0 100%
ForScan Viewer 2 512 100% 0 80.97 255 6.2 2,350 0 0
FourStroke 1 47 0 100% 2.35 16 2.58 993 100% 0
Gauged 2 25 0 100% 8.46 26 2.85 1,068 100% 0
Konnwei OBD 1 16 0 94% 8.32 43 1.4 533 0 100%
Leagend OBD 3 28 0 79% 14.71 116 4.11 1,580 0 100%
Mini OBD II 3 52 0 100% 11.72 50 0.82 312 100% 0
Smart Connect 4 16 0 63% 1.7 8 0.34 126 0 100%
Smart OBD 3 2 0 100% 29.72 36 1.15 440 100% 0
Zhinengpeijia 6 22 0 86% 19.45 218 5.63 2,194 0 100%
V 1 9 0 56% 10.7 39 0.85 333 0 100%
OBD Fusion 49 2 0 0 0.27 3 0.01 6 0 0
MaxiAp200 183 495 0 13% 675.78 8,972 24.78 74,589 0 100%
Diag-Asia 41 322 0 13% 228.15 4,325 9.20 30,374 0 100%
Diag-China 163 585 0 4% 609.73 7,522 20.91 64,815 0 100%
MaxiAp 6 49 0 8% 229.88 3,285 8.30 24,893 0 100%
Diag-Europe 194 788 0 14% 772.64 9,234 21.42 83,545 0 100%
Diag-VW 182 201 0 23% 470.02 7,132 20.45 65,438 0 100%
Auto Diag 119 42 0 24% 405.55 5,132 11.76 43,420 0 100%
Diag-USA 123 313 0 2% 417.32 5,756 13.65 48,576 0 100%

TABLE III: The experiment result for the remaining car companion apps in addition to those in Table II.

2) Result Characteristics by Car Models: Overall, CAN-
HUNTER recovered car model information of 161, 819 (88.6%)
CAN bus commands, covering over 360 car models from 21
car makers. The distribution of the commands over part of
the car makers and models are shown in Table IV. As shown,
the reverse engineered results cover most of the popular car
makers and models today such as Audi A4, Toyota Corolla,
Honda Civic, etc.

3) Result Characteristics by Semantics: In total, CAN-
HUNTER successfully recovered the related semantics of
157, 296 (86.1%) commands. We manually interpreted and
categorized them and found 3, 439 different kinds of semantics.
Among them, 1,309 command semantics are for vehicle con-
trol while the remaining are for diagnosis. In Table V, we show
part of the semantics associated with the top number of recov-
ered commands along with their semantics categories. Typical

examples for control semantics are locking doors, sounding
horns. Typical examples for diagnosis semantics are reading
parameters from the vehicle such as speed, temperature, volt-
age, etc., which enable users to monitor the status of their cars.

4) Additional Commands: Since the target APIs are low-
level network programming interfaces, the reverse engineering
capability of CANHUNTER is not limited to CAN bus com-
mands but all communication data sent from car companion
apps to the vehicles or clouds. In particular, we find that
in our results CANHUNTER also discovered 41 unique AT
commands from the dongle apps and 267 interpreted com-
mands from the IVI apps, which are presented in Table X
and Table XI in Appendix. Note that these commands can be
easily distinguished from the CAN bus commands due to the
significant differences of the structure and format. Specifically,
AT commands are used for configuring the ELM interface of

10

Car Maker # Commands Car Model

Audi 51,517 A3, A4, A5, A6, A7, A8, Q3, Q5, Q7, S3, S4
Volkswagon 44,504 Cabrio, Corrado, Caddy, Gol, Golf, Jetta,

Lupo, New Bettle, Passat, Polo, Santana,
Transporter, Octavia, Kombi, Roomster

Skoda 11,009 Citigo, Fabia, Rapid, Superb, Yeti
Toyota 9,030 Auris, Avensis, Camry, Corolla, Prius, RAV4
BMW 8,963 Series 1, 3, 5, M5, X5
Seat 8,277 Ibiza, Leon, Altea, Mii, Toledo, Arosa
Mercedes 7,247 Benz
Lexus 6,087 CT200, ES350, GS350, GX460, RX450, IS460
Renault 5,025 Cilo, Megane2
Porsche 2,326 987FL, 997, 996, Cayman
MINI 2,118 Clubman, Cooper
Scion 570 FRS
Chevrolet 198 Lagunall
Subaru 159 Brz
Honda 104 Civic
Bently 60 Arnage, Azure, Brooklands
Lincoln 52 Continental
Ford 26 Galaxy
Lamborghini 20 Gallardo

TABLE IV: Distribution of reverse-engineered CAN Bus com-
mands over part of car makers.

Semantics # Commands Category

Engine speed 460 Diagnosis
Coolant temperature 281 Diagnosis
Throttle angle 256 Diagnosis
Oil temperature 176 Diagnosis
Engine load 134 Diagnosis
Boost pressure actual value 133 Diagnosis
Motor temperature 123 Diagnosis
Battery voltage 119 Diagnosis

Comfort function remote incl roof 77 Control
Comfort function key 73 Control
Single door lock remote 60 Control
Blink on unlock key 42 Control
Sound on remote lock volume 40 Control
Blink on lock 37 Control
Auto unlock when moving 27 Control
Marker lights when unlock 24 Control

TABLE V: Distribution of reverse-engineered CAN Bus com-
mands over part of command semantics.

OBD-II dongles [10], which are sent through the Bluetooth
or socket interfaces to the dongles. The other type is the
interpreted commands from the IVI apps mentioned in §VI-B1.
These commands are often interpreted into decimal values or
human-understandable strings, and are either pushed to the
remote cloud server or to the vehicle.

C. Correctness Evaluation

To evaluate the effectiveness of CANHUNTER, we need to
validate the correctness of the CAN bus commands recovered
from our experiments. However, due to the high difficulty
in obtaining the ground truth (i.e., the publicly known and
validated CAN bus commands), performing a comprehensive
correctness validation is very challenging for two reasons.
First, it is almost impossible to solely use real cars to validate
all these commands since it is both inefficient and costly.
Second, as introduced in §II, car manufactures and third-party
developers treat CAN bus commands confidential and never
post any of them in public documents.

Nevertheless, in this paper we tried our best to evaluate
the effectiveness from three sources: public resources, cross
validation, and real car tests. This allows us to successfully
validate 130,011 (71.2%) command syntactics as well as

128,298 (70.3%) command semantics. To summarize, in cross-
platform and cross-app validation, we observe no inconsis-
tency in command syntactics and semantics. From public
resources and real-car testing, we discover no false positive
in syntactics recovery and only 3 (1.2%) false positives in
semantics recovery among the 241 manually validated CAN
bus commands. Though there are 3 false positives found in the
semantic validation, we have confirmed that they are due to
programmer mistakes instead of the design or implementation
of CANHUNTER (detailed later).

Evaluation criteria and threats to validity. Since the com-
mands across car models are often quite different, we only
compare those of the same model. There are three means
to evaluate our results: (1) public resources, (2) cross-app
and cross-platform validation, and (3) real-car testing. The
syntactics is validated by comparing the hexadecimal values
of the commands. As for the semantic validation, we compare
the extracted semantics strings and thus manual validation is
also needed since the comparison is at natural language level.

We have to note that our cross-app and cross-platform
validation assumes developers never make the same mistakes
of the corresponding CAN bus commands in both apps or both
platforms, though it is very unlikely that such mistakes could
happen. Similarly, we assume the public available CAN bus
commands are also truly validated.

(1) Public resources. While CAN bus commands are confiden-
tial, we find that some of them are still publicly available, e.g.,
posted at car hacking forums, but scattered all over the Internet.
We tried our best to search for the ground truths from online
forums and documents (e.g., [18] [5] [9] [11] [16]), and picked
the commands that are validated by car hackers or researchers
through real-car testing. In addition, we also checked the
source code of 3 open-sourced self-driving car platforms:
ApolloAuto, Autoware, and Openpilot, which may also have
CAN bus commands. Among them, we find matched CAN bus
commands from Openpilot, but not from the other two code
bases since their car models do not match with the ones in
our results. Eventually, we collected 69 CAN bus commands
in total across 4 car models that are present in our results:
Toyota Prius, Audi A3, Seat Ibiza I-Tech, and Honda Civic.

Among these 69 CAN bus commands, 38 of them can
find matched syntactics with the commands uncovered in our
experiment, which are listed in Table VI. As shown, for these
38 commands, CANHUNTER is able to recover the semantics
of 33 (86.84%) commands. Within these 33 commands, 30
(90.91%) have matched semantics, while the remaining 3 are
false positives which are indicated by cross marks in the table.
For example, for command 0x324, the correct semantics
should be “Water Temperature”, but our tool recovered it as
“ENG_TEMP”. We went back to check the app code, and found
that the semantics strings associated with these 3 CAN bus
commands are indeed correctly recovered by our tool based on
our semantics recovery algorithm. Thus, these false positives
are actually not caused by the design or implementation of
CANHUNTER, but very likely due to programmer mistakes.

(2) Cross validation. Due to the limited number of publicly
available ground truth, we also attempted to evaluate the
correctness of our system by checking the uncovered CAN bus

11

Car Syntac. Semantics Semantics MatchedModel (Ground Truth) (Our Result)

0x727 Transmission Transmission X
0x750 Main Body MainBody X
0x780 Air Bag Airbag X
0x781 Precrash preCrash X
0x790 Distance Control Radar X
0x791 Precrash2 preCrash 2 X

Toyota 0x7A1 Steering Assist Steering Assist X
Prius 0x7A2 Park Assist APGS X

0x7B0 ABS Brake ABS X
0x7C0 Instrument ComboMeter X
0x7C4 Air Conditioner Air Conditioning X
0x7D0 Navigation Navigation X
0x7E0 Engine Controls ECT X
0x7E2 Hybrid System Cruise Control X
0x70C SteeringWheel Steering wheel X
0x70A EPHVA14AU37
0x710 GatewLear
0x712 SteerAssisMQB
0x713 Brake1UDSCondi ABS Brake X

Audi 0x714 DashBoard Instrument X
A3 0x715 Airba

0x746 AirCondiFront Auto HVAC X
0x773 MUStd4CPASE
0x7E0 ECM Engine X
0x7E1 TCMDQ Transmission X
0x711 ImmoUDS Immobilizer X

Seat 0x713 Brake1ESP ABS Brakes X
Ibiza 0x714 KombiUDS Instruments X

0x7E0 ECM Engine X
0x158 Speed EAT TRANS SPEED X
0x17C Engine RPM ENG STATUS X
0x188 EAT CHANGE RESF

Honda 0x1A3 TM CHANGE RESF
Civic 0x324 Water Tempreature ENG TEMP 7

0x1A4 VSA STATUS VSA WARN STATUS ABS X
0x305 SEATBELT STATUS SRS EDR DELTA VMAX 7
0x35E CAMERA MESSAGES FCM WARN STATUS 7
0x391 GEARBOX CVT ATF CHANGE RESF X

TABLE VI: Commands validated with public resources.

commands across different apps from the same or different
platforms. Since the CAN bus commands are independent
of the car companion apps, the command syntactics and
semantics of the same car model should be consistent across
different apps, which thus makes it possible to perform
correctness evaluation. Although the cross validation does not
directly reflect the validness of the commands, it sufficiently
implies the effectiveness and generality of our system since
the results come from different mobile app implementations.

Cross-platform validation. Among all car companion apps
that expose CAN bus commands, 31 of them are available
on both Android and iOS platforms. We compared the CAN
bus commands that CANHUNTER uncovered from them, and
found that 129, 266 (70.8%) commands uncovered from 15
of these apps have matched syntactics by cross comparing
the hexadecimal values. In Table VII, we show the names
for these 15 apps, and the statistics for the total numbers of
recovered syntactics and semantics from each platform as well
as the number of matched syntactics and semantics. For the
remaining 16 apps, CANHUNTER could not extract CAN bus
commands from either the Android one or the iOS one, which
thus prevents us from validating their results. For example,
CANHUNTER found 123 CAN bus commands from the 3 IVI
apps in iOS, but did not find any from their Android versions.
We manually checked these 3 apps and found that this is due to
different implemented logic in the app code instead of analysis
inaccuracies in our system. We suspect that this is because
their Android and iOS versions are developed by separate
teams. Among the CAN bus command pairs with matched
syntactics, we then compare the 128, 200 pairs (99.2%) where
the semantics of both of the commands are recovered. In this

App Android iOS Overlapped
Syn. # Sem. # Syn. # Sem. # Syn. # Sem.

ANCEL 1 0 16 15 1 0
BlueDriver 304 304 304 304 304 304
Carista 105,198 105,198 105,198 105,198 105,198 105,198
Carly for BMW 14,377 14,377 16,427 16,427 13,480 13,480
Carly for Mercedes 7,921 6,528 1,698 1,698 1,393 1,393
Carly for Porsche 1,963 0 278 0 7 0
Carly for Renault 5,199 0 1,255 44 1,058 0
Carly for Toyota 5,305 5,266 39 39 39 39
Carly for VAG 16,402 7,283 18,627 10,429 7,283 7,283
CarVantage 41 41 41 41 41 41
Engie 144 144 68 68 68 68
inCarDoc 160 160 160 160 160 160
iOBD2 5,007 5,007 218 218 218 218
Kiwi OBD 220 220 6 6 6 6
SekurTrackOBD 10 10 18 18 10 10

TABLE VII: Statistics of overlapped CAN bus command pairs
in cross-platform validation.

Car model # Overlapped App1 App2Android iOS

Audi A3 0 18 Carly for VAG Carly for Partners
Audi A4 52 52 Carista Carly for VAG
Audi A6 22 22 Carista Carly for VAG
Audi A8 0 26 Carista Carly for VAG
Seat Leon 19 19 Carista Carly for VAG
Skoda Fabia 0 24 Carista Carly for VAG
VW Caddy 0 12 Carista Carly for VAG
VW Polo 52 52 Carista Carly for VAG
VW Jetta 0 46 Carista Carly for Partners
VW Passat 0 42 Carista Carly for Partners
VW Golf 0 168 Carista Carly for Partners
VW Touareg 0 50 Carista Carly for VAG
VW Up 0 20 Carista Carly for VAG
VW Tiguan 8 0 Carista Carly for VAG
Skoda Superb 0 20 Carista Carly for VAG
Porsche Cayenne 0 72 Carly for VAG Carly for Partners
Toyota Prius 39 39 Carly for Toyota Carista
Toyota Camry 18 0 Carly for Toyota Carista
Toyota Corolla 21 0 Carly for Toyota Carista
Porsche 0 4 Carly for Porsche Carly for VAG
Porsche 0 4 Carly for Porsche Carly for Partner
BMW 550i 8 8 Carly for BMW Carista

TABLE VIII: Statistics of overlapped CAN bus command pairs
in cross-app validation.

comparison, we observed no inconsistency, which shows the
high effectiveness of our system.

Cross-app validation. In addition to cross-platform validation,
we also perform same-platform cross-app validation. Specifi-
cally, we check if there are overlapping command pairs of the
same car model from different apps within the same platform
(either Android or iOS). Overall, as presented in Table VIII, we
are able to find 745 CAN bus command pairs with matched
syntactics, which belong to 22 car models from 6 different
apps. Among them, 98 (13.2%) pairs have both commands
in the pairs recovered with semantics, and no inconsistent
semantics is observed between these pairs.

(3) Real-car testing. We also tested the uncovered CAN bus
commands on the real automobiles that we can access. The
two tested car models are Toyota RAV 4 2014 and Toyota
Corolla 2014 and the tested app is com.prizmos.Carista which
has the same set of CAN bus commands for Android and
iOS. We implemented a dynamic testing framework based
on Frida and Python, which hooks the target APIs described
in §V and captures the CAN bus commands sent from the
app to the vehicle. In the experiment, we manually trig-
gered all possible UI components that generate the CAN

12

Command (RAV4) Command (Corolla) Semantics

750 ... 14 1A 26 750 ... 1A 65 02 Wireless door locking
750 ... 14 92 26 750 ... 92 65 02 Blink turn signals
750 ... 14 9A 06 750 ... 9A 45 02 Panic Function on remote
750 ... 14 9A 25 750 ... 9A 61 02 Relock automatically
750 ... 9A 26 00 750 ... 65 02 20 Beep volume
750 ... 14 9A 26 750 ... 8A 65 02 Beep when locking
750 ... 13 00 40 750 ... 98 65 02 Warn beep when sunroof open
750 ... 14 9A 66 750 ... 9A 25 02 Unlock via remote
750 ... 11 00 60 750 ... 14 06 00 Unlock via physical key
750 ... 11 80 20 750 ... 11 C0 20 Unlock when shifting into gear
750 ... 11 80 40 750 ... 11 C0 60 Unlock when shifting into park
750 ... 11 80 70 750 ... 11 C0 70 Unlock when driver’s door open
750 ... 3B 15 00 750 ... 00 80 40 Daytime running light
750 ... 3B 12 10 750 ... 3B 12 10 Turn on interior lights
7C0 ... 3B A2 40 7C0 ... 3B A2 40 Display unit (MPG)
7C0 ... 3B 74 A0 7C0 ... 3B A7 C0 Seat belt warning (driver)
7C0 ... 3B A7 C0 7C0 ... 3B A7 C0 Seat belt warning (passenger)
7C0 ... 61 AE 40 7C0 ... 3B A1 28 Key in ignition sound
7C0 ... 61 A7 C0 7C0 ... 3B AF 40 Lane-change signal auto flasher
7C0 ... 61 AB 00 7C0 ... 3B AB 00 ECU Drive indicator zone
7C0 ... 61 AE 40 7C0 ... 3B AE 00 Display odometer
7CC ... 00 00 00 7CC ... 3B 81 00 A/C power
7CC ... 00 01 00 7CC ... 3B 82 00 Fan Speed

TABLE IX: Part of commands validated with real-car testing.

bus commands, intercepted the commands, and compared the
testing results with the ones reported from CANHUNTER. In
total, we obtained 88 commands from Toyota RAV4 and 84
commands from Toyota Corolla, and all of them match the
command automatically discovered from CANHUNTER, which
thus concretely demonstrates the effectiveness of our system.
In addition, corresponding physical behaviors (e.g., disabling
wireless door locking) were observed on the vehicles, which
also shows the validness of these commands. Table IX presents
a selected part of validated CAN bus commands (46 in total)
from these two vehicles.

D. Performance Evaluation

To evaluate the system efficiency, we executed CAN-
HUNTER on the 236 car companion apps in our dataset and
collected the running time and intermediate results. During
the experiments, we find that CANHUNTER is reliable when
analyzing all the apps without any human intervention and
crashes. The detailed statistics are shown in Table II as well
as Table III and the performance results are broken down
into three parts: backward slicing, dynamic forced execution,
and semantics recovery. Overall, the backward slicing usually
takes several minutes to complete while the dynamic forced
execution costs from several minutes to hours. We have broken
down the contributions of UI and function arguments to the
semantics recovery results, which shows both of them are
useful in the recovery process. There are some interesting
findings when comparing the apps between the two platforms.
For instance, we can notice that the size of the apps tend to be
larger in iOS platform than that of Android (e.g., the largest
app in iOS is 194M whereas the largest one in Android is
only 45M). Second, since there are more commands to recover
in iOS apps, their analysis time usually took longer. Finally,
it is interesting to notice that function argument association
heuristics plays a more critical role for semantic recovery in
iOS platform.

VII. DISCUSSIONS AND FUTURE WORK

A. Root Cause and Countermeasure

CANHUNTER has discovered a large set of CAN bus
commands from mobile apps. The root cause is that CAN
bus commands or their indirect mappings must exist in the
app in order to achieve the desired diagnosis or remote control
functionalities. Interestingly, as shown in §VI-B1, the exposure
level of CAN bus commands differs greatly between dongle
apps and IVI apps. In particular, the developers of IVI apps
tend to interpret CAN bus commands and thus do not directly
integrate them in the app code, while dongle app developers
tend to directly hardcode them.

We suspect that the causes of the differences between IVI
and dongle apps may be two folds. First, from the design
perspective, the IVI systems are far more sophisticated than
OBD-II dongles. More specifically, IVI systems usually have
cellular network connections and operating systems, which can
enable more complicated capabilities such as interacting with a
third entity (i.e., the cloud). However, OBD-II dongles usually
do not have cellular network and thus completely rely on the
input from nearby mobile apps connected through WiFi or
Bluetooth. Second, IVI systems and the corresponding IVI
apps are typically well-engineered by car manufacturers who
are aware of the sensitivity and safety-criticalness of their
private CAN bus commands. On the contrary, the dongle apps
are usually developed by third-party developers who may not
be fully aware of the importance of CAN bus commands.
Interestingly, we also find that a small portion of the CAN
bus commands are never used in some IVI and dongle apps,
since there is no UI correlation to let users trigger them. We
suspect they are only for debugging and testing purposes, and
thus should have been removed when the apps are released.

To prevent CAN bus commands from being reverse engi-
neered from companion mobile apps, there are two counter-
measures. First, developers can leverage interpreted commands
which can only be recognized by cloud or device firmware,
as demonstrated in the IVI apps. When specific functions are
triggered, the interpreted commands are sent to cloud or device
which will translate them into valid CAN bus commands.
Therefore, reverse engineer can only obtain these manufacture-
specific commands instead of the CAN bus commands. Sec-
ond, anti-analysis techniques such as encryption and obfus-
cation can be deployed to encrypt the hardcoded CAN bus
commands and obfuscate the program control flow, which
increases the difficulty of reverse engineering the mobile apps.

B. Limitations and Future Work

While CANHUNTER has uncovered a significant number of
CAN bus commands, it still has several limitations. First, due
to the limited ground truths and resources, we are only able
to validate 70% of our results. Meanwhile, a majority of the
validated commands comes from the cross validation and as a
result, the evaluation is possibly not 100% correct because the
developers can also make mistakes. As mentioned in §VI-C
that we observe inconsistent semantics between our result and
the public resources even though CANHUNTER functioned
correctly. The most reliable approach for validation is testing
the commands on real automobiles. In addition, false negative

13

may exist because CANHUNTER only focuses on the CAN bus
commands that sent from the low-level network APIs.

Second, as found in §VI, our current implementation of
CANHUNTER is not resilient to anti-analysis techniques such
as control flow obfuscation, which can fail our backward
slicing. Note that obfuscation is not a specific limitation of
our work, and it has long been a challenge for static program
analysis and reverse engineering [34]. Nevertheless, there also
exists some deobfuscation solutions (e.g., [23]), which we
plan to explore and integrate into CANHUNTER.

Third, CANHUNTER reported a great number of AT
commands and also interpreted commands during our
experiments (§VI-B4). Though not directly involved in the
CAN bus network, they can still affect the behavior of the
vehicle by interacting with cloud or OBD-II dongle, especially
for the interpreted commands which are capable of unlocking
the vehicle and shutting down the engine. Therefore, a further
study of the security impact of these interpreted commands is
worth of exploration.

Finally, we have witnessed the bloom of the IoT industry
recently, and there are a great number of IoT devices
having companion mobile apps such as those in smart home
systems [55] [22] [61]. In order for these mobile apps to
communicate with the IoT devices, various IoT protocols are
designed. In particular, the car companion apps in this work
can be considered a specific case of such IoT companion
mobile apps, and CAN is a special type of IoT protocol and the
CAN bus commands are the protocol message data that deter-
mines the function. Therefore, CANHUNTER has the potential
to be extended to reverse engineer the syntactics and semantics
of other IoT protocols. In addition, since CANHUNTER adopts
dynamic forced execution, the analysis does not require real
device connections and thus has the great potential to enable
large-scale IoT companion mobile app analysis. As such,
exploring the use of CANHUNTER to IoT protocol analysis
with companion mobile apps is our another future work.

VIII. RELATED WORK

CAN and vehicle security. CAN has been acting as an
essential part of vehicle security research. Previous work has
proposed many exploits to remotely control a vehicle as well
as reverse engineering the CAN protocol and commands.
For instance, Miller et al. [45], Checkoway et al. [27], and
Mazloom et al. [43] studied various possible attack surfaces
such as Bluetooth, Internet, and apps, which inspires our re-
search. Reverse engineering of CAN bus commands is also an
important building block for subsequent attacks on in-vehicle
systems. Previous work tried to observe the traffic inside the
automotive to obtain the CAN packets and replayed them back
into the CAN to attack the vehicle (e.g., [46] [51] [44] [38]).
Recently, there are also efforts on the defensive approaches
to protect the attacks on CAN such as anomaly detection
[28] [48] [49], forensics measures [35] and delayed data
authentication [49]. Compared with our work, the previous
reverse engineering works on CAN are not comprehensive
since each of them only focuses on one or two car models.
Besides, our research is novel in that we approach the same
reverse engineering problem from a completely different angle
by using the car companion apps emerged in recent years.

Protocol reverse engineering and semantics recovery. Re-
verse engineering of CAN bus commands is a type of network
protocol reverse engineering, which is a well studied area
especially in desktop applications and malware. For example,
Polyglot [26], AutoFormat [40], Discoverer [30], Tupni [31],
and ReFormat [58] use information from program executions
and/or network traces to reverse engineer network protocols
such as HTTP. Besides protocol syntactics, some previous
work also studied the recovery of protocol semantics based on
the communication traces [62]. Netzob [24], Dispatcher [25]
and ProDecoder [57] combine dynamic program analysis and
NLP techniques to extract semantics of protocols of interests.
Compared with previous works, we have a unique problem of
uncovering the CAN bus commands from highly interactive
mobile apps, and we solve this problem by using dynamic
forced execution to uncover the syntactics and code-level clues,
e.g., UI and function argument associations, to uncover the
semantics.

Forced execution. Forced execution has been used to discover
potential security threats since it can execute programs ignor-
ing regular constraints and external inputs. Recently, a number
of forced execution tools were built including J-Force [37]
for JavaScript applications, X-Force [50] and Limbo [60] for
binaries, and Dexism [34] and Forced-Path execution [36] for
Android apps. In these tools, they brute-force execute the
program flows by ignoring conditions in order to cover all
possible branches. CANHUNTER is inspired by these works,
and it adopts forced execution to our particular application
domain with a slicing-based forced execution, which executes
only the partial instructions involved for generating the CAN
bus commands.

IX. CONCLUSION

We have presented CANHUNTER, the first cost-effective
and automatic cross-platform reverse engineering system of
CAN bus commands through analyzing only the companion
mobile apps without using real cars. It features syntactic
recovery of CAN bus commands using backward slicing and
dynamic forced execution, and semantic recovery using UI
component correlation and function argument association. A
prototype of CANHUNTER for both Android and iOS platforms
has been developed, and applied to test 236 car companion
apps from both app markets. Evaluation results show that
CANHUNTER is able to uncover 182, 619 unique CAN bus
commands of 360 car models from 21 car makers, and recover
the semantics of 86.1% of them. Through public resources,
cross validation, as well as real car tests, we have validated the
syntactics and semantics of over 70% of the recovered CAN
bus commands. No inconsistency is observed in cross-platform
and cross-app validation, and only 3 false positives (which are
caused by mistakes from app developers, not the limitation
from CANHUNTER) are discovered in semantics recovery from
public resources and real-car testing. The rationale behind
CANHUNTER and also the countermeasure against our reverse
engineering is also discussed in the paper.

ACKNOWLEDGMENT

We would like to thank our shepherd Manuel Egele and
also the anonymous reviewers for their helpful comments that

14

have significantly improved the paper. This research was sup-
ported in part by National Science Foundation (NSF) Awards
1834215 and 1850533. Any opinions, findings, conclusions, or
recommendations expressed are those of the authors and not
necessarily of the NSF.

REFERENCES

[1] Android ndk. https://developer.android.com/ndk/.
[2] Apolloauto/apollo: An open autonomous driving platform. https://

github.com/ApolloAuto/apollo.
[3] Bluetooth low energy overview — android developers. https://

developer.android.com/guide/topics/connectivity/bluetooth-le.
[4] Can bus sniffer - reverse engineering vehicle data (wireshark).

https://www.csselectronics.com/screen/page/reverse-engineering-can-
bus-messages-with-wireshark/language/en.

[5] clear-mind ii: Fit3 hv(gp5)canł. http://clear-mind-mark2.blogspot.com/
2016/12/fit3-hvgp5can.html.

[6] Core bluetooth — apple developer documentation. https://
developer.apple.com/documentation/corebluetooth.

[7] Cpfl/autoware: Open-source to self-driving. https://github.com/CPFL/
Autoware.

[8] Cycript. http://www.cycript.org/.
[9] Detecting anomalies in controller area network for automo-

biles. http://cesg.tamu.edu/wp-content/uploads/2012/01/VASISTHA-
THESIS-2017.pdf.

[10] Elm327 obd to rs232 interpreter. https://www.elmelectronics.com/wp-
content/uploads/2016/07/ELM327DS.pdf.

[11] Explorative techniques and vulnerability assessment on automotive net-
works. https://www.politesi.polimi.it/bitstream/10589/141804/1/2018
07 Calin.pdf.

[12] Frida a world-class dynamic instrumentation framework. https://
www.frida.re/.

[13] How to Hack a Car - A Quick Crash Course. https:
//medium.freecodecamp.org/hacking-cars-a-guide-tutorial-on-how-
to-hack-a-car-5eafcfbbb7ec.

[14] Ida. https://www.hex-rays.com/products/ida/.
[15] An introduction to the can bus: How to programmatically control a

car. https://news.voyage.auto/an-introduction-to-the-can-bus-how-to-
programmatically-control-a-car-f1b18be4f377.

[16] openpilot. https://github.com/commaai/openpilot.
[17] Polysync/oscc: Open source car control. https://github.com/PolySync/

oscc.
[18] Raspberry pi - virtual sensors for car computers. http:

//www.grandprixforums.com/general-grand-prix-discussion/96047-
raspberry-pi-virtual-sensors-for-car-computers.html.

[19] Soot - a framework for analyzing and transforming java and android
applications. http://sable.github.io/soot/.

[20] Vehicle reverse engineering wiki. http://vehicle-reverse-
engineering.wikia.com.

[21] Why ford, lincoln, and lexus testers rule the self-driving roost.
https://www.caranddriver.com/news/a15344273/why-ford-lincoln-and-
lexus-testers-rule-the-self-driving-roost/.

[22] Amr Alanwar, Bharathan Balaji, Yuan Tian, Shuo Yang, and Mani
Srivastava. EchoSafe: Sonar-based Verifiable Interaction with Intelligent
Digital Agents. In ACM Workshop on the Internet of Safe Things
(SafeThings), 2017.

[23] Richard Baumann, Mykolai Protsenko, and Tilo Müller. Anti-proguard:
Towards automated deobfuscation of android apps. In Proceedings of
the 4th Workshop on Security in Highly Connected IT Systems, pages
7–12. ACM, 2017.

[24] Georges Bossert, Frédéric Guihéry, and Guillaume Hiet. Towards
automated protocol reverse engineering using semantic information. In
Proceedings of the 9th ACM symposium on Information, computer and
communications security, pages 51–62. ACM, 2014.

[25] Juan Caballero and Dawn Song. Automatic protocol reverse-
engineering: Message format extraction and field semantics inference.
Computer Networks, 57(2):451–474, 2013.

[26] Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Song. Polyglot:
Automatic extraction of protocol message format using dynamic binary
analysis. In Proceedings of the 14th ACM conference on Computer and
communications security, pages 317–329. ACM, 2007.

[27] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Ander-
son, Hovav Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis,
Franziska Roesner, Tadayoshi Kohno, et al. Comprehensive Experi-
mental Analyses of Automotive Attack Surfaces. In USENIX Security
Symposium, 2011.

[28] Kyong-Tak Cho and Kang G Shin. Fingerprinting Electronic Control
Units for Vehicle Intrusion Detection. In USENIX Security Symposium,
2016.

[29] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso.
Automated test input generation for android: Are we there yet? arXiv
preprint arXiv:1503.07217, 2015.

[30] Weidong Cui, Jayanthkumar Kannan, and Helen J Wang. Discoverer:
Automatic protocol reverse engineering from network traces. In
USENIX Security Symposium, pages 1–14, 2007.

[31] Weidong Cui, Marcus Peinado, Karl Chen, Helen J Wang, and Luis
Irun-Briz. Tupni: Automatic Reverse Engineering of Input Formats. In
ACM conference on Computer and Communications Security (CCS),
2008.

[32] Roderick Currie. Hacking the can bus: basic manipulation of a modern
automobile through can bus reverse engineering. SANS Institute, 2017.

[33] Marco Di Natale, Haibo Zeng, Paolo Giusto, and Arkadeb Ghosal.
Understanding and using the controller area network communication
protocol: theory and practice. Springer Science & Business Media,
2012.

[34] Mohamed Elsabagh, Ryan Johnson, and Angelos Stavrou. Resilient and
scalable cloned app detection using forced execution and compression
trees. In 2018 IEEE Conference on Dependable and Secure Computing
(DSC), pages 1–8. IEEE, 2018.

[35] Tobias Hoppe, Stefan Kiltz, and Jana Dittmann. Security threats to
automotive can networkspractical examples and selected short-term
countermeasures. Reliability Engineering & System Safety, 96(1):11–
25, 2011.

[36] Ryan Johnson and Angelos Stavrou. Forced-path execution for android
applications on x86 platforms. In Software Security and Reliability-
Companion (SERE-C), 2013 IEEE 7th International Conference on,
pages 188–197. IEEE, 2013.

[37] Kyungtae Kim, I Luk Kim, Chung Hwan Kim, Yonghwi Kwon, Yunhui
Zheng, Xiangyu Zhang, and Dongyan Xu. J-force: Forced execution on
javascript. In Proceedings of the 26th international conference on World
Wide Web, pages 897–906. International World Wide Web Conferences
Steering Committee, 2017.

[38] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Ta-
dayoshi Kohno, Stephen Checkoway, Damon McCoy, Brian Kantor,
Danny Anderson, Hovav Shacham, et al. Experimental Security
Analysis of a Modern Automobile. In IEEE Symposium on Security
and Privacy (S&P), 2010.

[39] Hyeryun Lee, Kyunghee Choi, Kihyun Chung, Jaein Kim, and Kangbin
Yim. Fuzzing can packets into automobiles. In 2015 IEEE 29th
International Conference on Advanced Information Networking and
Applications, pages 817–821. IEEE, 2015.

[40] Zhiqiang Lin, Xuxian Jiang, Dongyan Xu, and Xiangyu Zhang. Au-
tomatic protocol format reverse engineering through context-aware
monitored execution. In Proceedings of the 15th Annual Network and
Distributed System Security Symposium, San Diego, CA, February 2008.

[41] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. Automatic reverse
engineering of data structures from binary execution. In Proceedings of
the 17th Annual Network and Distributed System Security Symposium
(NDSS’10), San Diego, CA, February 2010.

[42] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An
input generation system for android apps. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering, pages 224–
234. ACM, 2013.

15

https://developer.android.com/ndk/
https://github.com/ApolloAuto/apollo
https://github.com/ApolloAuto/apollo
https://developer.android.com/guide/topics/connectivity/bluetooth-le
https://developer.android.com/guide/topics/connectivity/bluetooth-le
https://www.csselectronics.com/screen/page/reverse-engineering-can-bus-messages-with-wireshark/language/en
https://www.csselectronics.com/screen/page/reverse-engineering-can-bus-messages-with-wireshark/language/en
http://clear-mind-mark2.blogspot.com/2016/12/fit3-hvgp5can.html
http://clear-mind-mark2.blogspot.com/2016/12/fit3-hvgp5can.html
https://developer.apple.com/documentation/corebluetooth
https://developer.apple.com/documentation/corebluetooth
https://github.com/CPFL/Autoware
https://github.com/CPFL/Autoware
http://www.cycript.org/
http://cesg.tamu.edu/wp-content/uploads/2012/01/VASISTHA-THESIS-2017.pdf
http://cesg.tamu.edu/wp-content/uploads/2012/01/VASISTHA-THESIS-2017.pdf
https://www.elmelectronics.com/wp-content/uploads/2016/07/ELM327DS.pdf
https://www.elmelectronics.com/wp-content/uploads/2016/07/ELM327DS.pdf
https://www.politesi.polimi.it/bitstream/10589/141804/1/2018_07_Calin.pdf
https://www.politesi.polimi.it/bitstream/10589/141804/1/2018_07_Calin.pdf
https://www.frida.re/
https://www.frida.re/
https://medium.freecodecamp.org/hacking-cars-a-guide-tutorial-on-how-to-hack-a-car-5eafcfbbb7ec
https://medium.freecodecamp.org/hacking-cars-a-guide-tutorial-on-how-to-hack-a-car-5eafcfbbb7ec
https://medium.freecodecamp.org/hacking-cars-a-guide-tutorial-on-how-to-hack-a-car-5eafcfbbb7ec
https://www.hex-rays.com/products/ida/
https://news.voyage.auto/an-introduction-to-the-can-bus-how-to-programmatically-control-a-car-f1b18be4f377
https://news.voyage.auto/an-introduction-to-the-can-bus-how-to-programmatically-control-a-car-f1b18be4f377
https://github.com/commaai/openpilot
https://github.com/PolySync/oscc
https://github.com/PolySync/oscc
http://www.grandprixforums.com/general-grand-prix-discussion/96047-raspberry-pi-virtual-sensors-for-car-computers.html
http://www.grandprixforums.com/general-grand-prix-discussion/96047-raspberry-pi-virtual-sensors-for-car-computers.html
http://www.grandprixforums.com/general-grand-prix-discussion/96047-raspberry-pi-virtual-sensors-for-car-computers.html
http://sable.github.io/soot/
http://vehicle-reverse-engineering.wikia.com
http://vehicle-reverse-engineering.wikia.com
https://www.caranddriver.com/news/a15344273/why-ford-lincoln-and-lexus-testers-rule-the-self-driving-roost/
https://www.caranddriver.com/news/a15344273/why-ford-lincoln-and-lexus-testers-rule-the-self-driving-roost/

[43] Sahar Mazloom, Mohammad Rezaeirad, Aaron Hunter, and Damon
McCoy. A Security Analysis of an In-Vehicle Infotainment and App
Platform. In Usenix Workshop on Offensive Technologies (WOOT),
2016.

[44] Charlie Miller and Chris Valasek. Adventures in automotive networks
and control units. Def Con, 21:260–264, 2013.

[45] Charlie Miller and Chris Valasek. A survey of remote automotive attack
surfaces. black hat USA, 2014:94, 2014.

[46] Charlie Miller and Chris Valasek. Remote exploitation of an unaltered
passenger vehicle. Black Hat USA, 2015:91, 2015.

[47] Michael Müter and Naim Asaj. Entropy-based Anomaly Detection for
In-vehicle Networks. In IEEE Intelligent Vehicles Symposium (IV),
2011.

[48] Michael Müter, André Groll, and Felix C Freiling. A structured
approach to anomaly detection for in-vehicle networks. In Information
Assurance and Security (IAS), 2010 Sixth International Conference on,
pages 92–98. IEEE, 2010.

[49] Dennis K Nilsson, Ulf E Larson, and Erland Jonsson. Efficient
in-vehicle delayed data authentication based on compound message
authentication codes. In Vehicular Technology Conference, 2008. VTC
2008-Fall. IEEE 68th, pages 1–5. IEEE, 2008.

[50] Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu, Zhiqiang Lin, and
Zhendong Su. X-force: Force-executing binary programs for security
applications. In USENIX Security Symposium, pages 829–844, 2014.

[51] Jason Staggs. How to hack your mini cooper: reverse engineering can
messages on passenger automobiles. Institute for Information Security,
2013.

[52] Jittiwut Suwatthikul, Ross McMurran, and R Peter Jones. In-vehicle
Network Level Fault Diagnostics Using Fuzzy Inference Systems.
Applied Soft Computing, 11(4):3709–3719, 2011.

[53] Ashraf Tahat, Ahmad Said, Fouad Jaouni, and Waleed Qadamani.
Android-based universal vehicle diagnostic and tracking system. In
2012 IEEE 16th International Symposium on Consumer Electronics,
pages 137–143. IEEE, 2012.

[54] Dave Jing Tian, Grant Hernandez, Joseph I Choi, Vanessa Frost, Christie
Raules, Patrick Traynor, Hayawardh Vijayakumar, Lee Harrison, Amir
Rahmati, Michael Grace, et al. Attention spanned: Comprehensive
vulnerability analysis of {AT} commands within the android ecosystem.
In USENIX Security Symposium, pages 273–290, 2018.

[55] Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng Wang, Blase Ur,
Xianzheng Guo, and Patrick Tague. Smartauth: User-Centered Autho-
rization for the Internet of Things. In USENIX Security Symposium,
2017.

[56] Jiande Wang, Yunshan Zhou, and Quan Li. Research on Fault Di-
agnostic System in CVT based on UDS. Advances in Mechanical
Engineering, 7(1):128432, 2015.

[57] Yipeng Wang, Xiaochun Yun, M Zubair Shafiq, Liyan Wang, Alex X
Liu, Zhibin Zhang, Danfeng Yao, Yongzheng Zhang, and Li Guo. A
semantics aware approach to automated reverse engineering unknown
protocols. In Network Protocols (ICNP), 2012 20th IEEE International
Conference on, pages 1–10. IEEE, 2012.

[58] Zhi Wang, Xuxian Jiang, Weidong Cui, Xinyuan Wang, and Mike
Grace. ReFormat: Automatic Reverse Engineering of Encrypted Mes-
sages. In European Symposium on Research in Computer Security
(ESORICS), 2009.

[59] Haohuang Wen, Qi Alfred Chen, and Zhiqiang Lin. Plug-n-pwned:
Comprehensive vulnerability analysis of obd-ii dongles as a new over-
the-air attack surface in automotive iot. In 29th USENIX Security
Symposium (USENIX Security 20), 2020.

[60] Jeffrey Wilhelm and Tzi-cker Chiueh. A forced sampled execution
approach to kernel rootkit identification. In International Workshop
on Recent Advances in Intrusion Detection, pages 219–235. Springer,
2007.

[61] Nan Zhang, Xianghang Mi, Xuan Feng, XiaoFeng Wang, Yuan Tian,
and Feng Qian. Dangerous Skills: Understanding and Mitigating
Security Risks of Voice-Controlled Third-Party Functions on Virtual
Personal Assistant Systems. In IEEE Symposium on Security and
Privacy (IEEE S&P), 2019.

[62] Qingchuan Zhao, Chaoshun Zuo, Giancarlo Pellegrino, and Li Zhiqiang.
Geo-locating drivers: A study of sensitive data leakage in ride-hailing

services. In Annual Network and Distributed System Security sympo-
sium, February 2019 (NDSS 2019), 2019.

[63] Chaoshun Zuo, Zhiqiang Lin, and Yinqian Zhang. Why does your
data leak? uncovering the data leakage in cloud from mobile apps. In
2019 IEEE Symposium on Security and Privacy (SP), pages 1296–1310.
IEEE, 2019.

[64] Chaoshun Zuo, Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang.
Automatic fingerprinting of vulnerable ble iot devices with static uuids
from mobile apps. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, pages 1469–1483, 2019.

APPENDIX

The interpreted commands reported from CANHUNTER are presented in
Table XI which shows the distribution of the 267 interpreted commands with
the total 41 IVI apps that adopt this design combining all duplicated ones
for Android and iOS. The interpreted commands are often represented by
human understandable strings (e.g., UNLOCK, LOCK) and numbers (e.g., 2
for unlock and 0 for flash light). In particular, we also distinguish different
implementations of the IVI apps. Some of them push the commands to the
cloud which forwards control messages to the automobile, while others directly
send the interpreted commands to the vehicle via Wi-Fi or Bluetooth.

Table X shows the distribution of the AT commands with the 20 dongle
apps that expose them. In the experiment, we only reserve one command for
each kind of syntax, and totally we have discovered 41 types of AT commands.
Specifically, the AT commands are sent through Bluetooth or socket APIs for
configuring the ELM327 interface [10] of the OBD-II dongles. For instance,
command AT AL is for restricting the number of data byte in a CAN bus
message to 7 [10].

App # Command The Detailed Commands

Carly f. BMW 24 ATE, ATH, AT FC SH...
Carly f. Toyota 23 ATE, ATH, AT PB A...
Carly f. MB 24 ATE, ATH, AT ST FA...
Carly f. VAG 24 ATE, ATH, AT CEA...
Carly f. Partners 18 ATSH, ATMX, AT ST FF...
Carly f. Renault 24 ATE, AT FC SD, AT PB...
Carly f. Porsche 24 ATE, AT FC SD, ATH...
Carista 17 ATCEA, ATD, ATFSCH...
SekurTrack 5 ATED, ATE, ATA...
BlueDriver 18 ATE, ATA, ATL, ATSP...
Dr.OBD 2 ATE, ATCH
StarLine 7 ATE, ATA, ATH, ATCH...
ezOBD 18 ATI, ATE, ATCRA, ATL...
ANCEL 12 ATI, ATE, ATRA, ATCM...
ForScanViewer 35 ATCEA, ATCRA, ATSH...
FourStroke 10 ATZ, ATE, ATA, ATH...
Gauged 17 ATED, ATD, ATP, ATZ...
iOBD2 20 ATE, AT ST, AT CA F...
LeagendOBD 12 ATE, ATB, ATTR, ATQ...
Engie 8 ATE, ATSC, ATI, ATST...

TABLE X: AT commands extracted from dongle apps.

16

App # Command Content Sent to Cloud Sent to vehicle

AcuraLink 9 HORN LIGHT, HORN ONLY, UNLOCK, LOCK, LOCATION ... X
Alpine 2 frontSpeakerPattern, rearSpeakerPattern X
Alpine Tunelt 3 RESUME, PHONE DIAL END, AUDIO FOCUS X
Audi MMI Connect 10 LOCK, UNLOCK, G STAT, FIND CAR, G DLIST... X
Carbin Control 15 Climate Control Temperature, Control Fan Speed... X
Car-Net 4 Unlock:2, Lock:3, Flash:0, Hornlight:1 X
Companion 2 UNLOCK, LOCK X
Mini Connected Classic 1 PlayListCommand:0x88 X
Nissan Connect Services 19 RemoteServiceDoorLock, RemoteServiceHornBlow... X
E20 Remote 12 UnlockCar, TurnOnCharging, ManageHVAC... X
Mini Connected 7 UNLOCK DOORS, FUEL STATE MAX, HONK HORN... X
Nissan Leaf 5 REMOTE DOOR UNLOCK, HORN LIGHT, LIGHT ONLY... X
Ford Play 3 VPlayState:1/2/3 X
Genesis 8 RemoteFlashLight, EditSpeed, RemoteStart... X
Infinity Connection 8 REMOTE DOOR LOCK, REMOTE STOP, LIGHT ONLY... X
Infinity InTouch Services 8 REMOTE DOOR LOCK, REMOTE STOP, LIGHT ONLY... X
Kia Hands-On 4 open. close, horn, alert X
Lexus Enform Remote 4 Unlock:1, Lock:0, Start:1, Stop:0 X
Mahindra Blue Sense 4 Audio: ED0D3EE, Climite:ED0EEE... X
Mercedes Me 4 Unlock:1, Lock:0, Start:2, Stop:3 X
Mazda Mobile Start 4 Lock, Unlock, Start, Stop, Horn X
MyBuick 6 Unlock:3, Lock:2, PanicAlarm:6, RemoteStart:4 X
MyCarKia 2 EngineStart, EngineStop X
My Ford Mobile 4 UNLOCK CMD, START CMD, CANCEL START CMD... X
MyHyundai 9 start:41, stop:42, lock:40, unlock:43... X
My Mittsubishi Connect 5 HORN REMOTE OPERATION, ENGINEOFF REMOTE... X
NissanConnectServices 8 REMOTE DOOR LOCK, REMOTE STOP, LIGHT ONLY... X
Porsche Car Connect 8 D DOORS LOCKING, D OPENINGS, DC MIRROR CLOSE... X
OnStar RemoteLink 9 lockDoor, unlockDoor, start, alert, diagnostics X
Lexus RES+ 4 start, stop, lock, unlock X
Hyundai SmartRemote 3 Volume, Channelist, Follow TV X
Ford Remote Access 3 unlock ford, start foed, lock ford X
Tesla 7 UNLOCK, HONK HORN, FLASH LIGHTS X
Uconnect 4 Unlock, Lock, Start, Stop X
UVOeco 9 Lock Doors, Stop Climate, Horn & Lights Activation... X
Volvo On Call 4 Unlock, Lock, Start, Stop X
Toyota Entune Remote Connect 4 Unlock:1, Lock:0, Start:1, Stop:0 X
Tesla Plus 17 remote start drive, sun roof control, trunk open... X
HondaLink 6 LOCK, UNLOCK, START, STOP, HORN ONLY, LIGHT ONLY X
HondaLink Aha 6 LOCK, UNLOCK, START, STOP, HORN ONLY, LIGHT ONLY X
Land Rover Comfort Controller 19 Fan:1024, LeftSeatBack: 1007 X

TABLE XI: Interpreted commands from IVI apps.

17

	Introduction
	Background
	CAN and CAN Bus Command
	Automotive Mobile App Ecosystem
	Applications of CAN Bus Commands

	Overview
	Running Example
	Technical Challenges
	Key Insights
	Scope and Assumptions

	Design
	Backward Slicing
	Syntactics Recovery
	Semantics Recovery

	Implementation
	Evaluation
	Experiment Setup
	Experiment Result
	Result Characteristics by App Categories
	Result Characteristics by Car Models
	Result Characteristics by Semantics
	Additional Commands

	Correctness Evaluation
	Performance Evaluation

	Discussions and Future Work
	Root Cause and Countermeasure
	Limitations and Future Work

	Related Work
	Conclusion
	References
	Appendix

