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ABSTRACT

Multi-port chargers, capable of simultaneously charging mul-
tiple mobile devices such as smartphones, have gained im-
mense popularity and sold millions of units in recent years.
However, this charging-targeted feature can also pose secu-
rity and privacy risks by allowing one of the simultaneously
charging devices to communicate with another one if not
properly designed and implemented as these devices are ac-
tually interconnected. Unfortunately, such risks have not
been thoroughly investigated and we have identified a novel
attack surface in the circuit design of multi-port chargers,
which allows an adversary to exploit one port to (𝑖) eaves-
drop on the activities of other devices being charged and (𝑖𝑖)
inaudibly inject malicious audio commands if the charging
device supports voice assistants and USB-C interface.
In this paper, we design and implement a novel frame-

work, XPorter, to analyze and demonstrate the uncovered
security and privacy threats in multi-port chargers. Specif-
ically, it leverages the changes in the voltage signals on one
neighbor port to monitor the voltage changes of the charging
port induced by various user activities, including recogniz-
ing the running apps and uncovering keystrokes. Moreover,
XPorter can also achieve inaudible audio injection attacks
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from the neighbor port to the charging mobile device via the
USB-C interface. We extensively evaluate the effectiveness of
XPorter using five commodity multi-port chargers and five
mobile devices. The evaluation results show its high effective-
ness in recognizing the launching of 20 mobile apps (88.7%)
and uncovering unlocking passcode (98.8%). Furthermore,
XPorter achieves 100% success rates in inaudible audio injec-
tion attacks on three voice assistants. In addition, our study
also shows thatXPorter is resilient to various impact factors
and presents the potential of attacking multiple victims.
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1 INTRODUCTION

The recent explosive growth of mobile devices, such as smart-
phones and tablets, has fostered various styles and capabili-
ties of battery-charging accessories whose relevant market
has been projected to reach approximately 1, 580 million US
dollars by 2022 [12]. Multi-port chargers are one of those
representative accessories that provide multiple ports (e.g.,
two or more USB-C/USB-A ports) for users to charge multi-
ple mobile devices simultaneously. This type of charger is
becoming extremely popular over the past five years because

https://doi.org/10.1145/3570361.3613293
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Figure 1: Illustration of multi-port chargers in real-life scenarios. A

multi-port charger can support battery charging for multiple mobile

devices simultaneously.

people have a growing demand for charging multiple devices
with varying charging specifications [12]. Figure 1 shows
four typical real-life scenarios that demonstrate the usage of
commodity multi-port chargers.

However, this multi-device charging feature exposes an at-
tack surface that could allow one device to conduct malicious
actions on other devices when they are charging simultane-
ously. This vulnerability stems from the fundamental design
of the multi-port charger, where all charging ports are con-
nected in parallel and share the same voltage. Consequently,
any voltage change in one port could affect all other parallel-
connected ports, making it possible to launch attacks on one
port to eavesdrop or inject voice commands into other con-
nected devices. Previous research has revealed that the volt-
age changes of a charging mobile device can reveal sensitive
information, such as button presses, keystrokes on the un-
locking screen, and various running apps on smartphones [9,
17, 20, 39], and these voltage changes can also be exploited
to manipulate the charging device’s voice assistant, enabling
the injection of malicious voice commands and potentially
leading to the interpretation of incorrect information [37].

Unfortunately, these severe security and privacy concerns
associated with multi-port chargers have been largely ne-
glected. One possible reason for this oversight is that multi-
port chargers appear to be immune to these security issues
since they are not primarily designed for data transfer, which
is an essential attack surface for eavesdropping and voice
command injection attacks on other target devices (e.g., USB
hubs [13, 32, 35]). Therefore, we aim to fill this knowledge
gap by analyzing two typical attacks, i.e., (i) eavesdropping
attacks and (ii) inaudible audio injection attacks, as the first
step towards shedding light on these previously overlooked
threats posed by multi-port chargers and contribute to en-
hancing their security measures.
We design and implement a novel framework, XPorter,

to facilitate our study on eavesdropping and audio injection
attacks stemming from the communication across (X ) charg-
ing ports of a multi-PORT chargER. Specifically, in regard to
the eavesdropping attack, XPorter first detects the leakage
of the voltage signals from one of the neighbor ports and
then conducts signal processing to obtain the informative
voltage clips to training models to recognize user activities to
infer sensitive information on other charging devices. On the

other hand, in respect of the inaudible audio injection attack,
XPorter leverages the USB-C charging interface to activate
the voice assistant of the charging device while bypassing
the speech verification system and then injects malicious
voice commands through a compromised multi-port charger.

We have implemented XPorter with a custom-built at-
tacking device to demonstrate the feasibility of the aforemen-
tioned two attacks. As a proof of concept, first,XPorter aims
to eavesdrop on three particular types of sensitive informa-
tion, i.e., unlocking passcode, launching apps, and sensitive
keystrokes, from the charging device due to the fundamental
design flaw existing in multi-port chargers. Specifically, we
use the attacking device to collect the leaked voltage signals
from 20 popular mobile apps and two soft keyboards (i.e., un-
locking numeric keyboard and full-size QWERTY keyboard)
running on five mobile devices (i.e., iPhone 13 Pro, iPhone 11,
OnePlus 10 Pro, Google Pixel 4, and iPad Pro 2019) that are
charging with five commodity multi-port chargers from dif-
ferent vendors (i.e., UGREEN 40Wdual USB-C charger, Anker
65W dual USB-C charger, Belkin 45W dual wall charger, Ap-
ple 35W dual USB-C charger, and ROMOSS 10W dual USB-A
charger). Our evaluation results of the eavesdropping at-
tacks show high effectiveness of XPorter where it achieves
98.8% in recognizing the unlocking passcode, 88.7% in fin-
gerprinting the 20 mobile apps, and 83.0% in uncovering the
alphabetic keystrokes of a QWERTY keyboard. Moreover, it
also demonstrates that XPorter is resilient to various prac-
tical impact factors, including different multi-port chargers,
mobile devices, and battery levels of the charging devices. In
addition, we show the potential of eavesdropping onmultiple
victims’ activities and provide efficient countermeasures to
smooth out the voltage leakages to defend against XPorter.

In respect of demonstrating the inaudible audio injection
attack, we evaluate it over three commodity voice assistants,
including Apple Siri, Google Assistant, and OnePlus Breeno.
Specifically, the attacking device can receive the voice com-
mands remotely from the adversary by Bluetooth and then
modulate them to injectable audio clips. Next, it leverages the
audio pin of the USB-C interface to automatically activate the
voice assistant of the charging smartphone while bypassing
the speech verification mechanism that is widely deployed
in commodity mobile devices. Finally, the modulated au-
dio clips that contain malicious voice commands would be
injected into the charging device to obtain more private in-
formation about the device’s owner or manipulate the voice-
controllable IoT devices (e.g., Apple HomeKit). The extensive
evaluation shows thatXPorter achieves 100% success rate in
activating the three voice assistants, injecting different voice
commands, and 12 trials of end-to-end injection attacks. A
demo video is available at https://youtu.be/X9HY9mIDTGw.
Contributions.We summarize the contributions as follows:

https://youtu.be/X9HY9mIDTGw
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• A novel attack. We introduce a new attack vector that
can be exploited to attack mobile devices charged by a com-
modity multi-port charger. It leverages the changes of the
voltage leakage between the neighbor USB charging ports
to reveal sensitive information and the characteristics of
the USB-C interface to inject malicious voice commands to
charging devices across ports.
• A new framework.We propose and implement a new at-
tack framework, XPorter, to demonstrate the feasibility of
the proposed attacks. Specifically, it exploits the leakage of
the voltage signal to recognize the unlocking passcode, run-
ning apps, and sensitive keystrokes. In addition, it exploits
the audio pins of the USB-C interface to inaudibly activate
the voice assistant and inject malicious voice commands
from the neighbor USB-C port to other charging devices.
• Comprehensive evaluation.We comprehensively eval-
uate the effectiveness of XPorter with five commodity
multi-port chargers and five mobile devices. The results
indicate that it performs effectively in eavesdropping on
various user activities. Moreover, XPorter achieves a 100%
success rate in activating different voice assistants and in-
audibly injecting different voice commands. In addition, we
also show the potential of attacking multiple victims and
further provide effective countermeasures.

2 BACKGROUND

2.1 Multi-port Charger

Nowadays, the multi-port charger allows users to charge
multiple mobile devices (e.g., smartphones, tablets) at the
same time. Figure 2a shows the basic architecture of a typical
multi-port charger, which includes an AC voltage step-down
transformer, a rectification circuit, a filtration circuit, a volt-
age regulation module, and multiple outputs charging ports.
First, the step-down transformer converts the high input
AC voltage (e.g., 110 V AC) to low AC voltage (e.g., 9 V AC).
Then, the rectification circuit removes the negative part of
the downgraded AC voltage to produce a partial DC with
oscillations, and a filtration circuit suppresses such oscil-
lations to generate a proper DC voltage. Finally, a voltage
regulation module eliminates other noise and outputs the
DC voltage (e.g., 5 V DC) to the charging ports for power-
ing multiple mobile devices. In particular, as the multi-port
charger needs to power two or more devices simultaneously,
the output charging ports are parallel connected together so
that each of them obtains the same voltage (e.g., 5 V). That is,
in a charging process, the voltage changes on one port can
induce voltage changes in its neighbor ports.

2.2 USB Type-A and USB Type-C Ports

Most commodity multi-port chargers adopt two types of
Universal Serial Bus (USB) standards: USB Type-A (a.k.a.,

(a) Architecture of a multi-port charger.

(b) USB-A port. (c) USB-C port.

Figure 2: Architecture of a multi-port charger and USB ports: (a)

Circuit of a typical multi-port charger, (b) USB-A port (4 pins), and

(c) USB-C port (24 pins on two sides).

USB-A) and USB Type-C (a.k.a., USB-C). The USB-A port is
commonly used in different mobile device accessories (e.g.,
charger, USB-hub), and Figure 2b shows its structure, where
two pins (pin 1 and pin 4) are used for charging the battery,
and two pins support data transfer. Moreover, the USB-C
port has been widely deployed in most Android smartphones
and will be mandatorily applied to all smartphones (includ-
ing iPhone) sold in the European Union by the end of 2024
based on a newly passed legislation [4]. Figure 2c shows
the structure of a USB-C port that consists of 24 pins on
two sides, and pins on both sides have the same functions
because of its rotationally symmetrical structure. Therefore,
users have no need to find the correct side to plug into the
USB-C port. Furthermore, the USB-C port supports not only
battery charging and data transmission but also audio in-
put (pin 8) and audio output (pin 6). As both ports support
battery charging, the power traces can be used for inferring
user activities on the charging smartphone. In addition, due
to the integrated features of USB-C ports, the smartphone
is also threatened by potentially injecting inaudible voice
commands, as we will demonstrate in this work.

2.3 Fundamental Principles

Below, we illustrate the fundamental principles of voltage
leakage and audio injection between two neighbor USB ports
of a multi-port charger from the aspect of physics.
Voltage leakage. Due to the parallel-connected architec-
ture of USB ports in multi-port chargers, which allows them
to simplify the circuit design by sharing a common output
DC voltage, a fundamental design flaw arises, resulting in
voltage leakage across neighboring USB ports. In a common
battery charging scenario, we denote the output voltage of
the charging port as 𝑉𝑐 (𝑡) and the voltage of another neigh-
bor port as 𝑉𝑥 (𝑡). As these two ports are parallel connected,
their relations are shown in Equation 1 as follows:

𝑉𝑥 (𝑡) ∝ 𝐶 ·𝑉𝑐 (𝑡), (1)
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Figure 3: Motivating example scenario of two attacks via XPorter. (i) Eavesdropping attack (left-hand): When the smartphone is being charged

by a multi-port (2-port) charger, the victim performs various activities (e.g., unlocking the smartphone, opening an app, and typing keystrokes),

which induces voltage changes (grey color) on the charging port as well as the neighbor port. Meanwhile, the attacker acquires the voltage

leakage (blue color) and utilizes it to uncover private information (e.g., passcode, app usage, and sensitive keystroke input). (ii) Inaudible audio
injection attack (right-hand): Based on a compromised multi-port charger, the attacker can achieve audio injection by activating the voice

assistant of the victim’s smartphone through the audio pin of the USB-C interface and then injecting malicious voice commands to obtain

further user privacy (e.g., “Where’s my home?”) or control the voice-controlled IoT devices (e.g., “Open the door”).

where 𝐶 is a mapping factor that reflects the 𝑉𝑥 (𝑡) changes
with the𝑉𝑐 (𝑡) based on the circuit design between the neigh-
bor USB ports. Note that the magnitude and shape of 𝑉𝑥 (𝑡)
and 𝑉𝑐 (𝑡) may be different, but the mapping factor 𝐶 only
depends on the design of the hardware circuit [32, 33]. That
is, for a specific multi-port charger, 𝐶 is a constant factor
between the two neighbor USB ports.

We assume the load of the smartphone is 𝑅𝑠 (𝑡) when being
charged by a multi-port charger through a USB powerline.
Based on Ohm’s law, we can present the running current
𝐼𝑐 (𝑡) for charging the smartphone in Equation 2:

𝐼𝑐 (𝑡) = 𝑉𝑐 (𝑡)/𝑅𝑠 (𝑡) ∝ 1/𝑅𝑠 (𝑡), (2)

When the user performs different smartphone activities (e.g.,
running apps, pressing buttons on keyboards), these activ-
ities induce different displays of lighter/darker pixels on
an OLED touchscreen that consume different amounts of
power [9], resulting in load changes Δ𝑅(𝑡) on the battery
of the charging smartphone [20, 38]. As such, these load
changes induce the changes of voltage Δ𝑉𝑐 (𝑡) on the charg-
ing port, as well as voltage changes Δ𝑉𝑥 (𝑡) the neighbor
port because of the leakage across ports, which is shown in
Equation 3:

Δ𝑉𝑥 (𝑡) ∝ 𝐶 · Δ𝑉𝑐 (𝑡) ∝ 𝐶 · 𝐼𝑐 (𝑡) · Δ𝑅(𝑡). (3)

Therefore, it is feasible to exploit the voltage leakage of a
neighbor USB port to monitor the voltage changes of the
charging smartphone and further infer user privacy.
Inaudible audio injection. Since USB-C ports support au-
dio transmission as discussed in §2.2, it is feasible to achieve
an inaudible audio injection attack towards the voice assis-
tant of the victim’s smartphone. The first step is to activate
the voice assistant, but most commodity smartphones have a

speech verification mechanism that can deny the activation
request of a non-owner activating command. Fortunately,
the USB-C interface provides a solution to activate the voice
assistant [37]. That is, commodity smartphones allow the
wire control board of the earphone to activate voice assistant
by pressing the button for nearly 1 to 2 seconds, which is
also integrated into the functions of a USB-C port. Therefore,
the attacker can manipulate the audio pin’s voltage changes
to simulate a button-pressing event to inaudibly activate the
voice assistant of the victim’s smartphone while bypassing
the speech recognition system.
After activating the voice assistant through the above

method, one can inject a modulated audio signal that con-
tains malicious voice commands to the victim’s smartphone
across the neighbor USB-C ports of a commodity multi-port
charger. Specifically, the modulated audio signal 𝐴(𝑡) for
injecting voice commands can be denoted as follows:

𝐴(𝑡) = 𝛼 · 𝑥 (𝑡) +𝑉𝑜 𝑓 𝑓 𝑠𝑒𝑡 , (4)

where 𝑥 (𝑡) is the original audio clip containing the voice
command, 𝛼 is a factor to adjust the amplitude, and 𝑉𝑜 𝑓 𝑓 𝑠𝑒𝑡
is an extra DC offset to compensate for the initial voltage of
the port. Then an analog-to-digital converter (ADC) will take
the modulated signal and convert it to a digital signal that
can be recognized by the audio pin of the USB-C interface.

3 MOTIVATION AND THREAT MODEL

3.1 A Motivating Example

We present a motivating example of launching eavesdrop-
ping and audio injection attacks through a commodity multi-
port charger in this subsection. That is, the user connects the
smartphone to one port of the charger for battery charging,
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unlocks the smartphone with a password (e.g., “1234”), and
then launches the appWhatsApp to send a message to oth-
ers (e.g., “abcde”). This series of activities change the energy
consumption of the smartphone battery and further changes
the running current in the power line as well as the output
voltage provided by the charger. As mentioned in §2.1, the
voltage changes in one port can induce voltage changes of
other neighbor ports, and these changes present detectable
and predictable features that can be exploited for inferring
corresponding user activities. In addition, the attacker can
exploit the integrated audio pin in the USB-C interface to
activate the voice assistant (e.g., Apple Siri) and then inject
malicious audio commands (e.g., “open the door”).

In Figure 3, we present the changes of voltages in both the
user’s charging port and a neighbor port when the user per-
forms different activities. Specifically, we show the voltage
changes of unlocking password input, app launching, and
QWERTY keystrokes. As can be seen, both the voltages of the
charging port (grey curve) and the neighbor port (blue curve)
present distinctive and synchronized changes when pressing
a button to unlock the smartphone, launch apps, or enter
keystrokes. In addition, we also show the patterns at the
audio input pin of the user’s charging port and the neighbor
port when we activate the voice assistant Siri and inject the
malicious voice command “open the door” into it. As such,
Siri will then follow the voice command to open the door of
a smart home that is equipped with Apple HomeKit [3].

3.2 Threat Model

We consider a common scenario of using multi-port chargers
to charge mobile devices (e.g., smartphones) where victims
connect their devices to the ports and perform different ac-
tivities (e.g., unlocking the smartphone, running apps). An
attacker can share the multi-port charger with the victims
and launch two types of attacks: eavesdropping attack and
inaudible audio injection attack. Such a scenario is ubiquitous
in public facilities and shared space, e.g., offices and airports.
Eavesdropping.When launching an eavesdropping attack,
the attacker monitors the voltage changes of a neighbor
port and exploits the voltage traces to infer privacy-sensitive
information, i.e., (i) digits of the smartphone’s unlocking
password, (i) the victims’ app usage and corresponding activ-
ities, and (iii) sensitive keystrokes of QWERTY keyboard. We
assume the attacker can share the neighbor port of a multi-
port charger with the victims, but cannot compromise (i) the
commodity multi-port charger to install malicious firmware,
(ii) the victims’ USB power line to monitor current traces, and
(iii) the victims’ smartphone including malware installation.
Inaudible audio injection.When launching an inaudible
voice injection attack, the attacker can use the USB-C inter-
face to bypass the speech verification and activate the voice

Figure 4: Overview of XPorter.

assistant (e.g., Apple Siri, Google Assitant) of the victims’
smartphones to inject modulated audio commands through
the audio signal pin of the neighbor USB-C port. As such, we
assume that the attacker can first compromise a multi-port
charger that has USB-C ports by connecting the audio pins
of the two neighbor USB-C ports together. Then, the attacker
shares the multi-port charger with the victims in a shared
place and then leverages a customized attacking device to
achieve the inaudible audio injections. In addition, the at-
tacker can utilize speech synthesis [34] tools (e.g., Google
WaveNet [27]) to generate modulated audio commands.

4 ATTACK DESIGN

4.1 Overview of XPorter

Figure 4 presents the overview of XPorter in launching
the eavesdropping attack and audio injection attack. Specif-
ically, an attacker first shares the multi-port charger with
the victim and obtains the voltage leakage from a neighbor
port. Then, the recorded voltage traces will be processed
and normalized for user activity recognition to eavesdrop on
privacy information, i.e., unlocking passcode, running app
activities, and in-app keystrokes. Moreover, the attacker can
exploit the integrated audio pins in USB-C ports to inaudibly
activate and inject modulated audio commands into the vic-
tim’s charging smartphone to maliciously access the voice
assistant systems (e.g., Apple Siri, Google Assistant).

4.2 Eavesdropping Attack

Below,we present the design and implementation of XPorter
in launching an eavesdropping attack, which consists of three
components as follows: (i) signal pre-processing, (ii) data
normalization, and (iii) activity recognition.

4.2.1 Signal Pre-processing. After obtaining the raw voltage
signals, we design a signal processing algorithm to handle
the acquired voltage leakage as shown in Algorithm 1. Specif-
ically, XPorter first exploits a Savitzky-Golay (S-G) filter
to remove high-frequency noise in the collected time-series
signals (line 2-6) without distorting the signal shapes [7]. We
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then use the average values of the first one-second data as
the DC offset and deduce this offset value in the following
signals (line 7). Since the captured voltage signals contain
both non-activity and activity-induced voltage changes, we
apply a moving-variance window with a given threshold 𝜏
(e.g., 0.05) to find the start and end indices of the activity pat-
terns and then segment the signal with privacy information
of specific user-smartphone interactions (line 8-18).

4.2.2 Data Normalization. To eliminate the impact of the
varied output voltages when charging different mobile de-
vices, we apply methods of data normalization on the seg-
mented voltage signals. Specifically, we normalize the am-
plitude of the processed voltage signals to the range from 0
to 1 and utilize the decimation factor down-sampling algo-
rithm [16] to reshape these voltage signals to fixed length
vectors (e.g., 128 × 1), and then leverage the dynamic time
warping (DTW) algorithm [30] to generate the vectors that
maintain the informative patterns for training deep learn-
ing models that can recognize fine-grained user activities.
Specifically, the DTW algorithm maps output voltage signal
S to the down-sampledS′ by optimizing all admissible paths
from 𝑆𝑖 to 𝑆

′
𝑖 as shown in Equation 5:

𝐷𝑇𝑊𝑞 (𝑆𝑖 , 𝑆
′
𝑖 ) = min

𝜋∈P(𝑆𝑖 ,𝑆
′
𝑖
)
(

∑︁
(𝑖, 𝑗 ) ∈𝜋

𝑑 (𝑆𝑖 , 𝑆
′
𝑗 )
𝑞) (

1
𝑞
)
, (5)

where 𝜋 is the alignment path of a sequence of 𝐾-length
index pairs ((𝑖0, 𝑗0), (𝑖1, 𝑗1), . . . , (𝑖𝐾−1, 𝑗𝐾−1)), P(𝑆𝑖 , 𝑆

′
𝑖 ) is the

set containing all admissible paths, 𝑑 (𝑆𝑖 , 𝑆
′
𝑖 ) is the Euclidean

distance between S𝑖 and S
′
𝑗 , and 𝑞 is the power constant.

To resolve this optimization problem, we need to obtain
the quantity 𝑅𝑖, 𝑗 [36] between two timestamps 𝑖 and 𝑗 as:

𝑅𝑖, 𝑗 = 𝐷𝑇𝑊𝑞 (𝑆→𝑖 , 𝑆
′
→𝑗 )

𝑞, (6)

where 𝑆→𝑖 means the time-series voltages obtained up to
timestamp 𝑖 , and we can further obtain 𝑅𝑖, 𝑗 as Equation 5:

𝑅𝑖, 𝑗 = min
𝜋∈P(𝑆→𝑖 ,𝑆

′
→𝑗
)

∑︁
(𝑘,𝑙 ) ∈𝜋

𝑑 (𝑆𝑘 , 𝑆
′

𝑙
)𝑞

∗
=

𝑑 (𝑆𝑖 , 𝑆
′
𝑗 )
𝑞 + min

𝜋∈P(𝑆→𝑖 ,𝑆
′
→𝑗
)

∑︁
(𝑘,𝑙 ) ∈𝜋 [:−1]

𝑑 (𝑆𝑘 , 𝑆
′

𝑙
)𝑞

∗∗
=

𝑑 (𝑆𝑖 , 𝑆
′
𝑗 )
𝑞 +min(𝑅𝑖−1, 𝑗 , 𝑅𝑖, 𝑗−1, 𝑅𝑖−1, 𝑗−1),

(7)

where ∗ denotes the constraints on all admissible paths 𝜋 ,
and we set the target length 𝐾 as 128 and calculate the each
𝑅𝑛−1,𝑚−1 to retrieve the corresponding 𝐷𝑇𝑊𝑞 (𝑆𝑖 , 𝑆

′
𝑖 ). After

the data normalization process, we then collect the normal-
ized data vectors as the input to train a deep learning classi-
fier for fine-grained user activity recognition.

Algorithm 1: Signal processing of eavesdropping attack
Input:V = [𝑣𝑐1 (𝑡1), 𝑣𝑐2 (𝑡2), . . . , 𝑣𝑐𝑚 (𝑡𝑚)]: obtained signals

from the voltage leakage. 𝑜 , 𝑓 : order and frequency
of the S-G filter. 𝜏 : threshold of the variance.

Output: S = [𝑆1, 𝑆2, . . . , 𝑆𝑛]: filtered voltage signal clips
containing specific smartphone activities.

1 Ṽ ← [], S ← [] ⊲ initialize the empty array to record
filtered signals and segmented voltage signal clips.

2 𝑓 𝑖𝑙𝑡𝑒𝑟 ← 𝑠𝑔𝑜𝑙𝑎𝑦𝑓 𝑖𝑙𝑡 (𝑜, 𝑓 ) ⊲ initialize an S-G filter with the
given order 𝑜 and the frequency 𝑓 .

3 for each signal 𝑣𝑐𝑖 (𝑡𝑖 ) ∈ V do

4 �̃�𝑐𝑖 (𝑡𝑖 ) ← 𝑓 𝑖𝑙𝑡𝑒𝑟 (𝑣𝑐𝑖 (𝑡𝑖 ))
5 Ṽ ← [�̃�𝑐1 (𝑡1), �̃�𝑐2 (𝑡2), . . . , �̃�𝑐𝑖 (𝑡𝑖 )]
6 Ṽ ← [�̃�𝑐1 (𝑡1), �̃�𝑐2 (𝑡2), . . . , �̃�𝑐𝑚 (𝑡𝑚)] ⊲ the filtered signals.
7 Ṽ ← Ṽ − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ( [�̃�𝑐1 (𝑡1), · · · , �̃�𝑐 𝑓 (𝑡𝑓 )]) ⊲ deduct offset.
8 𝑤𝑖𝑛𝑑𝑜𝑤 ←𝑚𝑜𝑣𝑣𝑎𝑟 (𝜏, 𝑓 /10) ⊲ initialize an moving-variance

window with the given threshold 𝜏 and size of 𝑓 /10.
9 for each filtered signal �̃�𝑐𝑖 (𝑡𝑖 ) ∈ Ṽ do

10 R𝑐𝑖 (𝑡𝑖 ) ← 𝑤𝑖𝑛𝑑𝑜𝑤 (�̃�𝑐𝑖 (𝑡𝑖 )) ⊲ obtain the time-variance
signal from the moving-variance window.

11 for each 𝑟𝑖 ∈ R𝑐𝑖 (𝑡𝑖 ) do
12 if ∀𝑟 𝑗 ∈ [𝑟𝑖 , 𝑟𝑖+𝑓 /10], 𝑟 𝑗 < 𝑟 𝑗+1 𝑎𝑛𝑑 𝑟 𝑗 > 𝜏 then
13 𝑘𝑠𝑡𝑎𝑟𝑡 ← 𝑟𝑖 ⊲ obtain start index of the activity.

14 else if ∀𝑟 𝑗 ∈ [𝑟𝑖 , 𝑟𝑖+𝑓 /10], 𝑟 𝑗 > 𝑟 𝑗+1 𝑎𝑛𝑑 𝑟 𝑗 > 𝜏
then

15 𝑘𝑒𝑛𝑑 ← 𝑟𝑖+𝑓 /10 ⊲ obtain end index.

16 𝑆𝑖 ← [�̃�𝑐𝑖 (𝑘𝑠𝑡𝑎𝑟𝑡 ), �̃�𝑐𝑖 (𝑘𝑠𝑡𝑎𝑟𝑡 )] ⊲ voltage signal clip that
contains the specific activity.

17 S ← [𝑆1, 𝑆2, . . . , 𝑆𝑖 ]
18 S = [𝑆1, 𝑆2, . . . , 𝑆𝑛]
19 Output voltage signal clips S that contain user activities.

4.2.3 Activity Recognition. As the processed voltage signals
are time series, XPorter adopts a one-dimensional convo-
lutional neural network (CNN) cascaded with a Long Short-
term Memory (LSTM) [14] layer to build a classifier for var-
ious activity recognition (e.g., app launching, single key-
pressing inference). Specifically, CNN-based neural networks
are utilized in various side-channel attacks [9, 17] using one-
dimensional time-series signals because the convolutional
layers can capture both temporal and spatial features from
time-series signals and achieve a promising classification
accuracy [15]. Furthermore, as the CNN extracts multiple
features from the voltage signal, we use an LSTM layer to
learn the order dependence and identify these features.
The topology of our CNN-LSTM model consists of three

convolutional layers followed by an LSTM layer, a fully-
connected layer, and a softmax layer with a single output
for each instance (e.g., key, app). For the three convolutional
layers, we use the ReLU as the activation function and add
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a max-pooling layer to reduce the dimension by half. Then,
a flatten layer converts the extracted feature maps to one-
dimensional vectors as the valid input for the LSTM layer.
After the LSTM layer, a dropout layer with 50% dropout rate
is added to regularize the network and prevent overfitting. Fi-
nally, the fully-connected layer and the softmax layer output
the predicted class with the highest probability.

4.2.4 Implementation Details. In practice, we implement the
first two components, signal pre-processing (§4.2.1) and data
normalization (§4.2.2) by leveraging MATLAB R2022a Signal
Processing Toolbox (version 3.0) that supports reliable toolk-
its. Then, we implement the CNN-LSTM neural networks
for activity recognition in Keras 2.3 on the Tensorflow 2.0
framework. In the training stage, we set the batch size as
32 and use the cross-entropy loss and Adam optimizer with
an initial learning of 0.01 and epoch of 100. In particular,
the output shape depends on the corresponding task (e.g.,
the number of apps and the number of keys on a keyboard).
Specifically, we study 10 numeric buttons on the unlocking
keypad of the touchscreen (10 classes), 20 different mobile
apps (20 classes), and the alphabetic keys on the full-size
QWERTY keyboard (26 classes).

4.3 Inaudible Audio Injection Attack

Apart from the eavesdropping attack, we also present the de-
sign and implementation of XPorter in launching an inaudi-
ble audio injection attack in this subsection. As mentioned
in §3.2, the attacker can simply compromise the multi-port
charger by connecting the audio pins of the output ports
together without modifying the packaging, which results in
less suspicion for the victim. Then the attacker connects the
attacking device (details in §4.4) to the neighbor USB-C port
and conducts three steps to achieve malicious audio injection:
(i) audio modulation (§4.3.1), (ii) voice assistant activation
(§4.3.2), and (iii) audio commands injection (§4.3.3).

4.3.1 Audio Modulation. As discussed in §2.2, the audio
signals obtained by the USB-C port are represented by the
changing current and voltage of the audio pin. As such, the
attacker should first convert the audio clips that contain
malicious voice commands to modulated voltage signals and
then inject these modulated voltage signals into the victim’s
smartphone. Specifically, we can exploit Equation 4 in §2.3 to
implement the audio modulation from the audio clips to the
recognizable voice commands. To achieve automatic audio
modulation, we use an audio board with a Bluetooth module
to receive the malicious voice command from the attacker
remotely and modulate it to a voltage signal that can be
received by the audio pins of the USB-C port and recognized
by the voice assistant of the victim’s mobile device. Moreover,
we also apply a differential amplifier module to adjust the

Figure 5: Audio pin voltage signals when activating three commodity

voice assistants (Apple Siri, Google Assistant, and Breeno) through

the USB-C interface. The red boxes present the voltage changes when

the voice assistants are activated.
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(b) Injected signal of USB-C.

Figure 6: Spectrograms of the modulated audio clip and the voltage

signal of the USB-C audio pin when injecting the voice command

“Open the door” to Siri through XPorter.

amplitude of the modulated audio signal to obtain the best
configurations for the injection attacks.

4.3.2 Voice Assistant Activation. Previously, inaudible au-
dio injection attacks [21, 41] on smartphones’ voice control
systems require voice samples from authorized users to gen-
erate hotword commands (e.g., "Hey Siri" or "Hello Google")
through virtual microphones and speakers to activate the
voice assistants. However, these replaying methods can eas-
ily be detected and prevented by state-of-the-art verification
approaches [1, 19, 40]. Therefore, in §2.3, we introduced the
headphone button-pressing event that can activate the voice
assistant while bypassing the speaker verification system.
To verify its practicality, we record the voltage signals of
the USB-C audio pin when activating smartphone voice as-
sistants and present the results in Figure 5. In practice, we
tested it on three commodity voice assistants (Apple Siri,
Google Assistant, and OnePlus Breeno), and we can know
that the voltage of the audio pin will boost to a high stage
when the voice assistant is activated. In particular, we find
that different voice assistants require different patterns of
input voltage changes on the USB-C audio pin to activate
themselves, e.g., different lasting times and amplitudes.
To activate the voice assistant through the introduced

method and achieve a more generalized audio injection at-
tack, we use a wire control board that contains a MOSFET
transistor to manipulate the voltage received by the audio
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(a) Circuit design of the attacking device.

(b) Prototype.

6V Power

Attacking device

Victim’s smartphone

Multi-port

 charger

(c) Attack scenarios.

Figure 7: Attacking device in launching eavesdropping and audio

injection attacks through a multi-port charger.

pin of a USB-C port. Specifically, the MOSFET transistor is
used to control the current flow between the audio pin and
the ground to simulate a fake button-pressing event that
produces the same pattern of the input voltage for activating
the voice assistants of the charging mobile devices.

4.3.3 Audio Commands Injection. After obtaining the mod-
ulated audio signals and activating the voice assistant, the
attacker can inject malicious audio commands through the
compromised multi-port charger to acquire user privacy
and perform further attacks. For instance, the attacker can
send voice commands like “What’s my name?” to obtain the
victim’s private information, make a ghost phone call by
injecting “Call my wife”, and hack the smart home equipped
with a voice control system (e.g., Apple HomeKit) by sending
malicious voice commands like “Open the door”. Figure 6a
and Figure 6b individually present the spectrograms of the
modulated audio clip and the injected signal received by the
USB-C audio pin when sensing the voice command “Open
the door” to Siri through XPorter. In particular, we find
that despite the modulated audio being distorted in voice
command injection, Siri can recognize the command and
conduct corresponding responses because the patterns that
contain the most important information are maintained as
the two spectrograms present (yellow part).

4.4 Custom-built Attacking Device

We design and implement a portable attacking device to
achieve eavesdropping and inaudible audio injection attacks
in XPorter, and Figure 7a–Figure 7c show the circuit de-
sign, prototype outlook, and attack scenarios, respectively.
First, the attacker can record the voltage leakages from the
neighbor USB port to launch various eavesdropping attacks.
Second, based on the assumption that the attacker can com-
promise the multi-port charger by parallel connecting the

audio pins of the neighbor USB-C ports, an attacker can
connect this attacking device to one of the USB-C ports and
then remotely activate the voice assistant of the victim’s
mobile device and send audio clips that contain malicious
voice commands to uncover sensitive information further.

In the prototype, we utilize an Arduino Nano microcon-
troller to record the voltage leakages and control the MOS-
FET transistor from a CX-729 wire control board [2] for
voice assistant activation, a Bluetooth audio board [11] for
receiving voice commands, an AD620 amplifier module [29]
for adjusting the amplitude of the recorded voltage signals
or modulated audio signals. As a proof-of-concept, we inte-
grate these components in a customized extension PCB board
powered by an external battery pack to eavesdrop on user ac-
tivities as well as inaudibly inject malicious voice commands
into the victim’s smartphone through the USB-C interface.
Note that it is possible to draw power from the charger to
support the attacking device by redesigning the prototype,
which can also be implemented smaller and stuffed into the
compromised charger to launch attacks directly.

5 EVALUATION

5.1 Effectiveness of Eavesdropping Attack

5.1.1 Experimental Setup. In the primary setting for evalu-
ating the effectiveness of the eavesdropping attacks, we use
the UGREEN 40WUSB-C port charger1, which has two USB-
C ports for battery charging. Specifically, we first use one
port to charge an iPhone 13 Pro as the victim’s smartphone
and then use the custom-built attacking device to record the
voltages of another port when recruiting five participants
(three males, two females) to collect data samples perform
three common activities: (i) entering the password to unlock
the smartphone, (ii) launching different mobile apps, and (iii)
typing words in chat apps such asWhatsApp. We follow the
same procedure and separately conduct experiments on four
other commodity multi-port chargers from different vendors
(§5.3.1), four other mobile devices (§5.3.2), and four other
battery levels of the charging device (§5.3.3). Moreover, all
data processing and model training processes are conducted
on a desktop with 32 GB memory and an Intel i7-9700K CPU,
and an NVIDIA GeForce RTX 2080Ti GPU.

5.1.2 Effectiveness of Unlocking Password Inference. To eval-
uate the effectiveness of XPorter in inferring unlocking
password, we collect voltage signals and obtain the pro-
cessed data samples from the neighbor output USB-C port
while pressing each button (i.e., from 0 to 9) on the unlock-
ing numeric keyboard for 100 times with a time interval of
1Note that dual-port chargers are also marketed as multi-port chargers. We
adopt it to verify the feasibility of XPorter, and also show the potential
of attacking multiple charging devices in §6.1. This work takes ethical
considerations seriously and has been approved by the IRB of our institution.
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Figure 8: Effectiveness evaluation of eavesdropping attack. (a): Confusion matrix of recognizing 10 different passcode pins (from 0 to 9) on
the unlocking screen. (b): Confusion matrix of fingerprinting 20 mobile apps. (c): Confusion matrix of uncovering 26 different keys on a

full-size QWERTY keyboard (from “a” to “z”). Evaluated app list: –YouTube, –Netflix, –TikTok, –Twitch, –Spotify, –Apple Music,

–SoundCloud, –Netease Cloud Music, –Facebook, –Twitter, –Instagram, –Snapchat, –WhatsApp, –Messenger, –Telegram,

–WeChat, –Amazon, –Google Map, –CNN News, –Venmo.

Figure 9: Response time of assistants

and human speaking.

#

Voice

Command

SNR

(dB)

#

Voice

Command

SNR

(dB)

Act. Inj. Act. Inj. Act. Inj. Act. Inj. Act. Inj. Act. Inj.

1 Call mom. 20.7 ✓ ✓ ✓ ✓ ✓ ✓ 11 Where is my home? 19.0 ✓ ✓ ✓ ✓ ✓ ✓

2 Call my wife. 21.2 ✓ ✓ ✓ ✓ ✓ ✓ 12 What’s my ETA? 20.7 ✓ ✓ ✓ ✓ ✓ ✓

3 Call Bob. 20.3 ✓ ✓ ✓ ✓ ✓ ✓ 13 Open the garage door. 21.5 ✓ ✓ ✓ ✓ ✓ ✓

4 Open Gmail. 19.8 ✓ ✓ ✓ ✓ ✓ ✓ 14 Turn on the lights. 19.8 ✓ ✓ ✓ ✓ ✓ ✓

5 Open WhatsApp. 20.3 ✓ ✓ ✓ ✓ ✓ ✓ 15 Turn off all alarms. 20.7 ✓ ✓ ✓ ✓ ✓ ✓

6 Open Paypal. 22.3 ✓ ✓ ✓ ✓ ✓ ✓ 16 Send a message to... 19.2 ✓ ✓ ✓ ✓ ✓ ✓

7 Check my voicemail. 19.8 ✓ ✓ ✓ ✓ ✓ ✓ 17 Send a reply email to... 18.8 ✓ ✓ ✓ ✓ ✓ ✓

8 Check my emails. 20.7 ✓ ✓ ✓ ✓ ✓ ✓ 18 Tell Bob where I am. 20.3 ✓ ✓ ✓ ✓ ✓ ✓

9 Check my wallet. 18.5 ✓ ✓ ✓ ✓ ✓ ✓ 19 Did I lock the front door? 21.3 ✓ ✓ ✓ ✓ ✓ ✓

10 What’s my name? 21.2 ✓ ✓ ✓ ✓ ✓ ✓ 20 What’s my next schedule? 19.5 ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Effectiveness of launching inaudible audio injection attacks via XPorter. We test voice

commandswith different SNRvalues and conduct 20 trials of end-to-end attacks, including the activation
(Act.) and injection (Inj.). (✓/✗: success/ fail).

0.5s. Then, we use 80% data samples to train the proposed
CNN-LSTM classifier for determining each input key of the
unlocking password and the remaining 20% data samples to
evaluate the performance of the trained model with 10-fold
cross-validation. Figure 8a shows the confusion matrix of the
evaluation results, where XPorter achieves 98.8% accuracy
in recognizing the ten passcode pins (from 0 to 9) on the un-
locking screen. As such, the attacker can precisely detect the
victim’s unlocking password and then unlock the victim’s
smartphone to steal more user privacy when the victim’s
smartphone is left by charging.

5.1.3 Effectiveness of App Fingerprinting. To evaluate the ef-
fectiveness of XPorter in recognizing mobile app activities,
we follow the same data collection procedure and record
traces when the in-charging smartphone launches different
mobile apps. Specifically, we select 20 most popular mobile
apps and launch each of them for 50 times and obtain the
first one-second voltages as the data samples for app fin-
gerprinting. Similarly, we also utilize 80% data samples to
train the classifier and the rest of 20% data for evaluating the

model performance. Figure 8b shows the confusion matrix
of the evaluation results, where XPorter presents an overall
accuracy of 88.7% in fingerprinting 20 popular mobile apps.
Moreover, we find XPorter performs the best in recog-

nizing apps such as Twitch and WeChat that have distin-
guishable voltage patterns due to their customized launching
animations that result in more energy consumption, which
induces distinctive patterns of the voltage signals. On the
contrary, XPorter performs the worst in recognizing apps
like Spotify (72%) andMessenger (78%) because they adopt
the default app launching setup (i.e., white background with
a static icon) and consume the lowest energy consumption
as they have fewer network requirements and screen ani-
mations. Therefore, the changes in the voltage incurred by
app launching are milder than other apps, which further im-
pacts the performance of XPorter in recognizing these apps.
Nevertheless, XPorter still demonstrates high accuracy in
detecting the app usage information of the victim during
the charging process stealthily, especially apps containing
sensitive information, e.g., Facebook andWhatsApp contain
the contact and address information of the users.
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5.1.4 Effectiveness of Keystroke Recovery. To achieve more
fine-grained eavesdropping attacks, we also evaluateXPorter
in recovering input keystrokes. Specifically, we collect data
samples by typing the keys on the QWERTY full-size key-
board and repeating each key for 100 times, including 26
alphabetic keys from “a” to “z”. Likewise, 80% of the collected
data samples are used to build the CNN-LSTM classifier for
recognizing keys, and 20% data samples are used to evaluate
the model’s effectiveness. Figure 8c shows the confusion ma-
trix of the evaluation results, where XPorter achieves over-
all 83.0% accuracy in recognizing 26 alphabetic keys (from
“a” to “z”) on a full-size QWERTY keyboard. In particular, we
find most misclassification always happens in two neighbor
alphabetic keys, e.g., nearly 11% testing samples are misclassi-
fied in recognizing keys “u” (63%) and “i” (71%) as the voltage
patterns incurred by these key-pressing events are close. On
the other hand, XPorter can detect keys on edge with high
accuracy rates, such as “q” (100%), “a” (96%), and “z” (98%) that
present distinctive patterns because they have fewer neigh-
bor keys. In short, XPorter has demonstrated the ability to
infer the victim’s keystrokes through the voltage leakage in
the charging process, which may contain fine-grained user
privacy such as the conversation in chatting apps likeWhat-
sApp, the password for payment in financial apps like PayPal.

5.2 Effectiveness of Audio Injection Attack

5.2.1 Experiment Setup. To evaluate the effectiveness of the
audio injection attack, we compromised the UGREEN 40W
USB-C port charger by connecting the audio pins of its two
USB-C ports together. We also use one port to charge an
iPhone 13 Pro correspondingly as the victim’s smartphone
and then plug the attacking device into another port. Since
the attacking device integrates a Bluetooth module for com-
munication, we conduct the evaluation process by control-
ling the attacking device to activate the voice assistant and
inject different modulated audio commands at a non-line-of-
sight (NLOS) distance of 5 m.

5.2.2 Effectiveness of Voice Assistant Activation. We conduct
experiments on smartphones with different voice assistants
to demonstrate the XPorter’s ability to activate the smart-
phone’s voice assistant while bypassing the speech verifi-
cation system. Specifically, we utilize three smartphones
(iPhone 13 Pro, Google Pixel 4, and OnePlus 10 Pro) with
different commodity voice assistant systems (Siri, Google
Assistant, and Breeno) by plugging them into the compro-
mised charger and then activating each voice assistant for
50 times. Meanwhile, we record the response time of each
trial as well as 50 trials of the response time of activating
these voice assistants by speaking hotwords such as “Hey
Siri”, “Hello Google”, and “Hey Breeno”. Figure 9 shows the
box plot of the response time of the three voice assistants

and the human speaking, and we know it takes an average
of 2.07, 2.18, and 2.05 seconds to activate Siri, Google As-
sistant, and Breeno through XPorter, respectively. On the
other hand, it only needs approximately 1.04 seconds to acti-
vate voice assistants by human speaking. Even though more
time is required to activate the voice assistant, XPorter can
bypass the speech verification mechanisms that have been
widely deployed in commodity mobile devices, which makes
XPorter more practical in a real-world scenario. Moreover,
as the injected audio commands are voltage signals,XPorter
cannot be detected and countered by existing defense ap-
proaches [1, 19, 40] that are proposed to defend against in-
audible audio injections through acoustic signals.

5.2.3 Effectiveness of Audio Commands Injection. To evalu-
ate the effectiveness of inaudible voice commands injection
attacks through XPorter, we exploit the Google WaveNet
API [27] to generate 20 voice commands that have been
widely used with high frequency in a quiet environment
(SNR ≤25 dB), and each of those voice commands is a sen-
tence that contains 2–10 words. Then, we activate the afore-
mentioned three voice assistants (Siri, Google Assistant, and
Breeno) using the proposed method and then inject each
voice command into them. Once a voice assistant receives
the voice commands and provides corresponding feedback,
we consider it as one successful attack trial. Table 1 shows the
detailed results of the 20 trials of end-to-end inaudible audio
injection attacks on the three voice assistants. In all end-
to-end attack trials, XPorter achieves 100% success rate in
activating the three voice assistants, and 100% success rate in
injecting different voice commands to compromise user pri-
vacy. Therefore, XPorter shows competitive performance
compared to other state-of-the-art inaudible voice injection
attacks [37, 41] and fills the gap between the eavesdropping
and the injection attacks via a multi-port charger.

5.3 Impact of Practical Factors

5.3.1 Impact of different multi-port chargers. Due to the va-
riety of different multi-port chargers’ circuits, the induced
voltage leakage presents different patterns. Thus, to evaluate
whether XPorter can be launched to other multi-port charg-
ers, we conduct further experiments by separately collecting
data and training models from four other different commod-
ity multi-port chargers: Apple 35W USB-C compact charger
(A2579), Anker 65W smart charger (A2668), Belkin 65W USB-
C charger (WCH013), and ROMOSS 2.1A USB-A charger.
Figure 10a shows the evaluation results of launching eaves-
dropping attacks on the five multi-port chargers, where we
find XPorter achieves high eavesdropping accuracy across
different multi-port chargers, e.g., 93.9% in inferring unlock-
ing passcode, 86.6% in recognizing app launching, and 82.2%
uncovering keystrokes. In particular, the results show that
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(a) Different multi-port chargers. (b) Different mobile devices. (c) Different battery levels.

Figure 10: Evaluation results of three practical impact factors on the eavesdropping attacks of XPorter: (a) Impact of different commodity

multi-port chargers, (b) Impact of different mobile devices, (c) Impact of different battery levels of the in-charging device. – Unlocking

passcode inference, – App recognition, – Keystroke recovery.

XPorter shows a relatively lower eavesdropping accuracy
when applying on the Apple 35W USB-C charger since it
presents a relatively high voltage ripple [6] in the charging
process so that the voltage changes induced by user activi-
ties are overwhelmed. However, the results demonstrate that
the voltage leakage is a fundamental design flaw existing
in different multi-port chargers, and XPorter presents a
promising performance in inferring fine-grained user pri-
vacy across different commodity multi-port chargers.

5.3.2 Impact of different mobile devices. We use five com-
modity devices, including four smartphones (iPhone 13 Pro,
iPhone 11, OnePlus 10 Pro, and Google Pixel 4) and one
tablet (iPad Pro 2019), to evaluate the impact of different
mobile devices. Figure 10b shows the results of launching
the eavesdropping attacks on different in-charging devices,
where we find XPorter achieves the highest accuracy in
inferring privacy from the iPhone 13 Pro and the iPad Pro
but the lowest accuracy in smartphones like the OnePlus 10
Pro and the Google Pixel 4. Because user interactions (e.g.,
launching apps or pressing keys) with an iPad Pro require
more energy consumption due to the large touchscreen and
UI components, which induces stronger voltage changes in
the charger and voltage leakage. Nevertheless, XPorter can
be scaled to different mobile devices with average accuracy
rates of 91.9%, 83.3%, and 81.0% to recognize the unlocking
passcode, the running app, and the keystrokes, respectively.

5.3.3 Impact of different battery levels. In practice, the mo-
bile device may have different battery levels when being
plugged into the port for charging the battery. To evaluate
the impact of different battery levels on the performance
of XPorter, we follow the same procedure and conduct
experiments when the iPhone 13 Pro is at five different bat-
tery levels: 0–20%, 20–40%, 40–60%, 60–80%, and 80–100%,
and Figure 10c shows the experimental results of inferring
the three user activities. Specifically, we know when the in-
charging mobile device is at a high battery level (e.g., ≥ 60%),
XPorter’s performance of the eavesdropping attack is ap-
proximately 15% higher than the lower battery levels (e.g.,
≤ 40%). Because most of the output voltage of the plugged

Table 2: Evaluation of inaudible audio injection attacks with differ-

ent impact factors’ combinations. Act. SR.: activation success rate.

Inj. SR.: injection success rate.

Multi-port

Charger

# of

Ports

Type of

Ports

Mobile

Device

Voice

Assistant

Battery

Level

Act.

SR.

Inj.

SR.

UGREEN 40 W 2 2× USB-C iPhone 13 Pro 80-100% 100% 100%

Anker 65W 3 1× USB-A
2× USB-C iPhone 13 Pro 40-60% 100% 100%

Belkin 65W 2 2× USB-C iPhone 13 Pro 60-80% 100% 100%
UGREEN 40 W 2 2× USB-C Google Pixel 4 20-40% 100% 100%

Anker 65W 3 1× USB-A
2× USB-C Google Pixel 4 60-80% 100% 100%

Belkin 65W 2 2× USB-C Google Pixel 4 0-20% 100% 100%
UGREEN 40 W 2 2× USB-C OnePlus 10 Pro 80-100% 100% 100%

Anker 65W 3 1× USB-A
2× USB-C OnePlus 10 Pro 60-80% 100% 100%

Belkin 65W 2 2× USB-C OnePlus 10 Pro 0-20% 100% 100%
UGREEN 40 W 2 2× USB-C iPad Pro 60-80% 100% 100%

Anker 65W 3 1× USB-A
2× USB-C iPad Pro 80-100% 100% 100%

Belkin 65W 2 2× USB-C iPad Pro 20-40% 100% 100%

USB port is used for charging the battery when the device is
at a low battery percentage. As such, when the battery is at
a low level, the voltage changes induced by user activities
could be overwhelmed by the intensive charging voltage. By
contrast, when the battery reaches a high level, the charging
process slows down, and the charging voltage is constant so
that the voltage changes incurred by various user activities
would present more distinctive patterns [9, 17, 38]. Despite
the impact caused by different battery levels of the charging
device, XPorter still achieves an overall accuracy of 91.1%,
82.3%, and 76.0% in inferring the unlocking passcode, the
running app, and the keystrokes at the five battery levels.

5.3.4 Impact factors on audio injection attacks. Table 2 is the
evaluation results of 12 end-to-end inaudible audio injection
attacks with combinations of different impact factors. The
results indicate that XPorter achieves 100% success rate in
activating voice assistants and 100% success rate in injecting
various voice commands across different multi-port chargers
and mobile devices with different battery levels. Therefore,
XPorter is resilient to the three practical factors in launch-
ing the injection attacks and realizes a high success rate.
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6 DISCUSSION

6.1 Extending Attacks

Eavesdropping audio through the voltage leakage. The
audio pins of a USB-C port also support audio output, allow-
ing for the acquisition of audio data through the analysis of
charging power patterns [37]. Therefore, XPorter can be
extended to obtain the voltage leakage from the audio output
pins of the USB-C port so that the attacker can further spy
on private information such as sensitive conversations in a
phone call and secret messages in voice mails. Figure 11a
and Figure 11b individually present the spectrograms of the
original audio conversations and the obtained voltage output
after applying the demodulation methods through XPorter
of the voice mail “The passcode is abcde”, where we can also
find similar patterns that contain sensitive information are
presented in the voltage signals. Hence, the attacker can also
exploit the voltage leakage as shown in XPorter to uncover
the conversation content in a more stealthy way.
Attacks on multiple victims. To explore the feasibility of
attacking multiple victims, we leverage the Anker 65W smart
charger (2×USB-C, 1×USB-A) to charge two iPhone 13 Pro,
and play the two charging smartphones simultaneously (e.g.,
launching two different apps) while recording the voltage
leakages from the neighbor USB-A port. Then, since the volt-
age leakage is a one-dimensional signal, we apply the blind
source separation method (e.g., FastICA [25]) to separate
the mixed voltage signal into individual signals to deter-
mine the activities of each victim. Figure 12a shows the pro-
cess of separating the mixed voltage leakage (SNR=11.4 dB)
to individual voltage signals when launching WhatsApp
(SNR=10.7 dB) and YouTube (SNR=10.3 dB) on the two charg-
ing smartphones, respectively. We then conduct extensive
experiments to evaluate the effectiveness of eavesdropping
on two victims, and Figure 12b shows the results. The ac-
curacy decreases by approximately 5.3–10.5% due to the
increase of noise in the individual signals after the source
separation, but XPorter still achieves acceptable accuracy
in uncovering different user activities. In addition, it is also
feasible to launch multi-victim audio injection attacks by
connecting all the audio pins of USB-C ports together in the
compromised multi-port charger. In this case, the attacker
can activate voice assistants and inject malicious voice com-
mands into multiple charging devices simultaneously.

6.2 Countermeasures

Software-based countermeasures. To prevent the audio
injection attacks from XPorter, one software-based solu-
tion is to disable the audio transmission function through the
system-level API [10] so that the voice control system cannot
detect the voice commands. In addition, since the eavesdrop-
ping attacks depend on the captured voltage signals, we can
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Figure 11: Spectrograms of the original audio and the demodulated

voltage signal of eavesdropping voice mail “The passcode is abcde”

through the USB-C interface.

(a) Signal separation in the two-victim scenario.

(b) Effectiveness of eavesdropping two victims.

Figure 12: Evaluation of attacking multiple victims.

add random noise (e.g., dummy traffic packets [18, 25]) in the
services to introduce extra power consumption to obfuscate
the voltage traces without influencing the user experience.
However, these methods inevitably bring extra energy con-
sumption and may impact the charging efficiency.
Hardware-based countermeasures. The straightforward
way to mitigate the inferences and injections from XPorter
is to eliminate the voltage leakages in multi-port chargers.
Hence, we can connect a physical peripheral between the
multi-port charger and the charging devices to smooth out
the voltage leakages. For instance, we implement a simple cir-
cuit prototype as shown in Figure 13a and Figure 13b with re-
sistors 𝑅 =10 kΩ, capacitors𝐶1 =10 `F,𝐶2 =1 `F,𝐶3 =100 `F,
𝐶4 =22 `F, and inductor 𝐿1 =0.1 H, and an AMS1117 low-
dropout regulator [31]. Figure 13c shows it can smooth the
voltage patterns induced by smartphone activities so that the
attacker cannot exploit the voltage leakages to infer user pri-
vacy through XPorter. Another method is that the manufac-
turer could redesign the hardware by modifying the parallel
connectionmechanism so that the voltage change of one port
cannot induce changes on other neighbor ports. Nevertheless,
redesigning the hardware circuits can be a costly endeavor
and is not feasible for sold multi-port chargers. Even if hard-
ware modifications are made, it is still ambiguous how users
would ascertain whether or not a multi-port charger could be
trusted. Therefore, raising public awareness and educating
users about the threat of untrusted multi-port chargers is a
more effective and economical solution to prevent attacks.
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Table 3: Quantified comparison with related works via charging devices. “ ”: yes, “#”: no, Acc.: classification accuracy, SR.: injection success

rate, UK: unlocking keyboard, FK: full-size QWERTY keyboard, NA: not available or evaluated.

Related works Target device

No need to compromise Eavesdropping attacks (Acc.) Audio injection

attacks (SR.)

Potential of attacking

multiple victims

Eavesdropping Injection App/Web Keystroke (UK/FK) Speech

Charger-Surfing [9] USB cable # # #  (98.7%/NA) # # #
GhostTalk [37] USB cable # # # #  (93.3%)  (100%) #
EM-Surfing [20] Power line of a wireless charger # #  (95.0%)  (98.3%/96.4%)  (81.0%) # #
Cour et al. [17] Power line of a wireless charger # #  (91.5%) # # # #

XPorter (Our method) Multi-port charger  #  (88.7%)  (98.8%/83.0%)  (NA)  (100%)  

(a) A simple circuit to smooth out voltage leakages.

(b) Prototype. (c) Voltage leakages.

Figure 13: Defend against XPorter via a simple circuit to smooth

out voltage leakages.

7 RELATEDWORKS

Attacks via charging devices. In Table 3, we summarize the
quantified comparisons betweenXPorter and other state-of-
the-art attacks via peripheral charging devices, i.e., USB ca-
bles [9, 37], wireless chargers [17, 20]. In particular, XPorter
can launch eavesdropping attacks without compromising
devices, but it tampers chargers for audio injection. It is the
first work to explore the essential design drawback of a popu-
lar charging interface, the multi-port chargers, to investigate
their eavesdropping and voice injection vulnerabilities. In
particular, XPorter outperforms these works in three-folds:
(i) Unlike prior works that need to compromise USB cables [9,
37] or chargers [17, 20] to launch attacks, XPorter has no
need to compromise victim devices to achieve fine-grained
eavesdropping attacks that loosen the assumptions of attack-
ers’ ability in [9, 17, 20]. It also reduces the attack efforts to
inject malicious voice commands than the prior work [37] be-
cause it needs no extra hardware component to be hidden in
victims’ devices or special USB cable as we have integrated all
modules in the custom-built attacking device; (ii) XPorter is
an orthogonal attack framework that can launch both eaves-
dropping attacks and inaudible voice injections through a
single attack surface of the new charging platform; and (iii)
XPorter presents the potential of attacking multiple charg-
ing devices simultaneously as we have demonstrated in §6.1.
Attacks via other power traces. The power consumption
of a smartphone’s battery can also be used to infer user

privacy [5, 22, 24, 26, 28]. That is, an attacker can use pre-
installed malware to obtain the battery profile of the victim’s
smartphone and further uncover user privacy. For instance,
POWERFUL [8] exploits the smartphone’s battery consump-
tion data to recognize mobile app usage and activities. Pow-
erSpy [23] uses two battery profiles in Android smartphones
(voltage_now and current_now) to determine the motion of
the smartphone for tracking the user’s location. Furthermore,
AppListener [25] leverages RF energy harvesting to capture
the emitted RF energy of a Wi-Fi router to recognize fine-
grained mobile app activities of a connected smartphone.

8 CONCLUSION

In this paper, we present a new attack vector for eavesdrop-
ping on user privacy and inaudibly injecting voice commands
through a commodity multi-port charger. To validate its fea-
sibility and practicality, we design and implement XPorter,
an attack framework that leverages the voltage leakage of
the neighbor ports to infer sensitive information and ex-
ploits the USB-C interface to activate voice assistant and
inject modulated voice commands into the victim’s charging
smartphone across the multi-port interface. Our extensive
evaluation demonstrates that XPorter is effective in infer-
ring fine-grained user privacy and also achieves 100% success
rate in launching inaudible audio injection attacks across var-
ious impact factors such as different multi-port chargers and
mobile devices. We hope our finds can raise public awareness
of the vulnerability of multi-port chargers and spur research
on detecting forthcoming attacks and new defense methods.
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