
DeMistify: Identifying On-device Machine Learning Models
Stealing and Reuse Vulnerabilities in Mobile Apps

Pengcheng Ren1, Chaoshun Zuo2, Xiaofeng Liu1, Wenrui Diao1
Qingchuan Zhao3 (B) , and Shanqing Guo1 (B)

1School of Cyber Science and Technology, Shandong University
{rpc,xiaofengliu}@mail.sdu.edu.cn, diaowenrui@link.cuhk.edu.hk, guoshanqing@sdu.edu.cn

2Ohio State University, zuo.118@osu.edu
3City University of Hong Kong, qizhao@cityu.edu.hk

ABSTRACT
Mobile apps have become popular for providing artificial intelli-
gence (AI) services via on-device machine learning (ML) techniques.
Unlike accomplishing these AI services on remote servers tradi-
tionally, these on-device techniques process sensitive information
required by AI services locally, which can mitigate the severe con-
cerns of the sensitive data collection on the remote side. However,
these on-device techniques have to push the core of ML expertise
(e.g., models) to smartphones locally, which are still subject to sim-
ilar vulnerabilities on the remote clouds and servers, especially
when facing the model stealing attack. To defend against these
attacks, developers have taken various protective measures. Unfor-
tunately, we have found that these protections are still insufficient,
and on-device ML models in mobile apps could be extracted and
reused without limitation. To better demonstrate its inadequate
protection and the feasibility of this attack, this paper presents
DeMistify, which statically locates ML models within an app, slices
relevant execution components, and finally generates scripts auto-
matically to instrument mobile apps to successfully steal and reuse
target ML models freely. To evaluate DeMistify and demonstrate its
applicability, we apply it on 1,511 top mobile apps using on-device
ML expertise for several ML services based on their install num-
bers from Google Play and DeMistify can successfully execute 1250
of them (82.73%). In addition, an in-depth study is conducted to
understand the on-device ML ecosystem in the mobile application.

CCS CONCEPTS
• Security and privacy→ Software and application security.

KEYWORDS
Android App; Machine Learning; On-device Model Reuse; Program
Analysis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04. . . $15.00
https://doi.org/10.1145/3597503.3623325

ACM Reference Format:
Pengcheng Ren, Chaoshun Zuo, Xiaofeng Liu, Wenrui Diao, Qingchuan
Zhao, and Shanqing Guo. 2024. DeMistify: Identifying On-device Machine
Learning Models Stealing and Reuse Vulnerabilities in Mobile Apps. In 2024
IEEE/ACM 46th International Conference on Software Engineering (ICSE ’24),
April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3597503.3623325

1 INTRODUCTION
Recently, we have witnessed an ongoing practice in mobile apps to
run machine learning (ML) models directly on users’ smartphones
instead of relying on a remote server or the cloud to deliver ML ser-
vices, including selfie retouching, biomedical screen locking, speech
recognition, etc. Primary advantages of this practice may include
better privacy since there is no sensitive data going outside the
smartphone [48], faster performance because it has no dependency
on the quality of network connection, and larger usage scenarios
where there is even no requirement on the network’s connectivity.

Unfortunately, this inevitable integration of ML models and mo-
bile apps exposes these on-device models at risk of leakage because
their execution environment (e.g., mobile operating systems and
other apps running on the same smartphone) is rarely trustworthy.
However, previous server-side model-stealing attacks (e.g., training
a surrogate model on the server-side leveraging reverse engineering
relevant remote APIs [11, 23, 39–41, 49, 51, 56]) and the correspond-
ing defense mechanisms (e.g., [7, 16, 26, 27, 37]) can hardly apply
in this new attack scenario.

Moreover, although there are a few recent works that attempt to
shed light on this new attack scenario, they rely on heavy manual
effort to extract these models from a limited number of apps [8],
which use particular on-device ML frameworks (i.e., TFLite [29]),
automatically extract on-device models that are implemented specif-
ically [48] (e.g., model in plaintext at rest or being decrypted af-
ter being loaded into the memory), or evaluate the robustness of
these models against adversary attacks. For example, [12] utilizes
standard API to extract model information to train a surrogate
model, [22] [21] takes a similar TensorFlow Hub fine-tuned model
as an alternative. Even in these specific implementations, these
approaches also be hindered because their strict assumptions are
hard to scale. Specifically, they assume that (𝑖) models in the plain-
text are always interpretable, while a large number of apps use
custom format making their plaintext infeasible to be analyzed,
or (𝑖𝑖) the Java codes of ML-related services are not obfuscated
and uses the standard APIs, which could not be held since most

https://doi.org/10.1145/3597503.3623325
https://doi.org/10.1145/3597503.3623325

ICSE ’24, April 14–20, 2024, Lisbon, Portugal
Pengcheng Ren1 , Chaoshun Zuo2 , Xiaofeng Liu1 , Wenrui Diao1

Qingchuan Zhao3 (B) , and Shanqing Guo1 (B)

apps adopt identifier renaming to obfuscate and encapsulate such
APIs, or (𝑖𝑖𝑖) ML-related services could always be accessible and
triggered manually in the user app, which may be impossible to be
achieved; for example, an app requires login via facial recognition,
while registration and face capture procedures are taken elsewhere.

Although defense solutions [20, 33, 47, 58] have been proposed
and partially deployed, they still fall short in counteringmodel reuse
attacks, which have not yet been considered and expose such key in-
tellectual property at risk. For software vendors, model reuse causes
property issues, and for developers, adversarial attacks caused by
model reusing expose users to security risks. For example, attackers
can identify applications with reuse attack vulnerabilities through
large-scale analysis, deploy these apps in the cloud, encapsulate
an API for free use to cause financial loss, or infinite query the
reused scripts, and construct adversarial examples to have a critical
failure (e.g., fingerprinting bypass). These reuse attacks have not
been taken seriously. Although developers have adopted a vari-
ety of protections and believe it is security enough, such as model
encryption and code obfuscation to prevent models from being
stolen and exploited, in fact, these are not robust to reuse attacks.
Considering the rapid growth of mobile apps deploying on-device
models, it is urgent to enable a comprehensive understanding of the
inadequate protection against ML model reuse attacks.

Though manually identifying and verifying such risks in individ-
ual apps are helpful; however, such tedious efforts are impractical to
scale in practice due to the millions of apps available on the market.
Therefore, in this paper, we propose DeMistify, an automated tool
to demonstrate the feasibility of on-DeviceMachine learningmodel
stealing and identify the corresponding model reusing vulnerabili-
ties in mobile apps. At a high level, we aim to leverage obfuscation-
resilient program slicing expertise to overcome the aforementioned
limitation in related works. Specifically, DeMistify consists of three
components: (i) Model Locating takes an app as its input, decom-
piles and statically analyzes its decompiled resources to detect the
presence of on-device ML models and native libraries that process
them. Next, according to the detected native libraries, (ii) Model
Execution Slicing extracts all components in the minimum necessary
that are related to the execution of those models by identifying the
boundary functions at the Java level. (iii) Model Reusing takes test-
ing cases as input, automatically generates scripts to reuse related
ML services by dynamically instrumenting corresponding mobile
apps, and finally returns the associated results for verification.

To show the vulnerability of the model reusing, DeMistify is
evaluated with 1,511 top mobile apps using on-device ML exper-
tise for several ML services based on their install numbers from
Google Play as of September 2021 and successfully rerun 1250 of
them (82.73%). In addition, an in-depth study is conducted to better
understand the corresponding ecosystem of these on-device ML
services. In particular, it reveals the current protection status of ML
models and analyzes the robustness of their protection, such as 821
ML apps adopt customized formats, but 88.43% can be exploited
by reuse attacks. Note that, DeMistify overcomes restrictions on
the test attempts (e.g., query limitations on servers), and that
90.3% of exploits contain sufficient low-dimensional information,
which makes it promising in security applications including train-
ing dataset recovery and vulnerability identification.

Contribution. This paper contains the following contributions:
• Novel Problem: This paper aims to address a novel research
problem, i.e., how to successfully steal on-device ML models
and correctly reuse them with relevant functional modules in
a given mobile app with accurate results. This problem has
not been well studied and becomes urgent to be addressed due
to the significant increase of this on-device service in apps.
• New Tool: This paper presents a new tool, i.e., DeMistify1,
that automatically steals on-device models in mobile apps and
reuses associated services by slicing the minimum necessary
components. It proposes a suite of automated programming
analysis techniques to statically slice the necessary boundary
functions and dynamically instrument mobile apps to reuse
ML services alongside their models.
• Empirical Evaluation: DeMistify has evaluated with 1,511
top mobile apps using on-device ML services based on their
install numbers from Google Play as of September 2021. It
has successfully instrumented 1,511 apps with testing inputs
and succeeded in 1250 apps obtaining meaningful results. In
addition, an in-depth study on the ecosystem of on-device ML
services in the Android reveals novel insights.

2 BACKGROUND
2.1 On-device ML Practice in Mobile Apps
With the widely used of on-device ML frameworks and SDKs, the
development of mobile apps offering related services has become
more efficient. Whether utilizing commercial or customized solu-
tions, these on-device services rely heavily on the models. From
a model processing perspective, the implementation of on-device
ML can be generalized into three distinct procedures, namely: (𝑖)
model pre-loading, (𝑖𝑖) model loading, and (𝑖𝑖𝑖) model post-loading.

(I) Model Pre-loading. The first step in implementing on-device
ML services formobile apps involves locating and verifying the pres-
ence of local models. If the models are not found, the apps may need
to trigger additional mechanisms to download the relevant models.
This is because while some apps choose to retrieve models from
servers during their initial setup, the majority of mobile apps carry
the models internally. Furthermore, to safeguard against theft, some
models are encrypted, while others remain in plaintext. Notably,
plaintext models at rest may be stored in custom formats that are
often undocumented. Additionally, since several SDK providers re-
quire license validation, mobile apps utilizing these SDKs must also
undergo the validation process before loading models into memory.

(II) Model Loading. Once the on-device models are prepared
and the necessary execution environmental requirements are met,
mobile apps proceed to load the models into memory. Since models
are not always stored in plaintext, apps employ two strategies
during the loading procedure. One is to load the encrypted file,
while the other involves decrypting the models before loading them.
To ensure both security and performance, this loading procedure is
often implemented using native code in the Android platform.

(III) Model Post-loading. After loading into memory, apps
may need to decrypt the model if it hasn’t been decrypted during
the loading procedure. Afterward, the app can proceed to interpret

1DeMistify is available at https://github.com/MGYN/DeMistify.

https://github.com/MGYN/DeMistify

DeMistify: Identifying On-device Machine Learning Models Stealing and Reuse Vulnerabilities in Mobile Apps ICSE ’24, April 14–20, 2024, Lisbon, Portugal

 package com.daon.sdk.face.DaonFace;
 7 public DaonFace(Context arg7, ..., arg9) {
 8 this.l = this.a(arg7, a(arg7, arg9));
 9 if(this.l.supportsFeature("quality")) {
10 b v9_1 = new b(arg7, ...);
11 this.h = ((Analyzer)v9_1);
12 ...}
13 }

14 private License a(Context arg5, InputStream arg6) {
15 License v0 = new License(arg6);
16 if(!v0.isVerified()) {
17 DaonFace.b(arg5, "Unable to verify license");
18 }
19 return v0;
20 }

21 public QualityResult getQuality
(Bitmap arg3, boolean arg4) {

22 Bundle v3 = this.h.analyze(arg3);
23 return new QualityResult(v3);
24 }

 package com.daon.sdk.face.module.b.b;
25 public b(Context context,...) {
26 AssetManager a = this.j.getAssets();
27 this.i = new DaonFaceQuality(a);
28 }

29 public Bundle analyze(Bitmap arg3) {
30 Yuv yuv = new YUV(arg3);
31 this.i.ProcessFrame(yuv.getData(),,,,,...);
32 Bundle v0 = new Bundle();
33 boolean v11_3 = this.i.isFaceFoundPass();
34 v0.putBoolean("result.face.found", v11_3);
35 v0.putBoolean(...);
36 return v0;
37 ... }

 package com.daon.face.quality.DaonFaceQuality;
38 public DaonFaceQuality(AssetManager assetManager){
39 createJNI(assetManager, "models", true, false);
40 }
41 public void ProcessFrame(byte[] bArr,,,,,...){
42 processFrameJNI(bArr, ...);
43 }

44 private native long createJNI(...);
45 private native void processFrameJNI(...);

 package com.daon.sdk.faceauthenticator.controller.a;
 1 void O(){
 2 this.f = new DaonFace(this.e,arg1,"license.txt");
 3 ...}

 4 private Result b(Bitmap v0,...){
 5 QualityResult v4_1 = this.f.getQuality(v0,true);
 6 ...}

1

9

6

2

3

7

4

8

5

Figure 1: Facial Recognition Login in CIMR DIALCOM.

these models and utilize them to perform relevant tasks on provided
inputs. Similarly, the core process of model inference usually takes
place in native code, while the input validation and acceptance are
typically handled at the Java level in Android.

3 OVERVIEW
3.1 A Running Example
This running example demonstrates how an app implements on-
device ML services with local models. In particular, this example
is obtained from a finance app, CIMR DIALCOM, which has more
than 100,000 installs and implements an on-device ML service al-
lowing users to log into the system via facial recognition.

Specifically, as shown in Figure 1, this app first initializes the
instance in step ❶ and checks the validity of its license in step ❷,
which is loaded from the file license.txt at line 2. If the license
has been verified, the second procedure of this app starting at line 10

is to load the associated model. There are three steps, i.e., initializing
two different instances of two different classes in step ❸ and ❹,
and invoking a native method via JNI to load the model into the
memory in step ❺. Next, it invokes the method getQuality at line
5 to start the on-device ML service allowing users to log into the
system via facial recognition beginning from step ❻. In particular,
the method getQuality passes the captured face image storing in
the bitmap format to the method processFrame at line 31 via step
❼, and then processFrame passes the face image to the designate
native method processFrameJNI at line 42 through step ❽ and
❾. Finally, the facial recognition result is obtained by invoking
the method isFaceFoundPass at line 33 which finishes the facial
recognition login mechanism.

3.2 Challenges and Insights
To steal the on-device ML models and reuse associated services in a
given app automatically, there are three main research challenges:

C1-How to Bypass Restrictions on On-device ML Services.
From the running example in step ❷, we can recognize that on-
device ML models and services contain restrictions to prevent theft
and unauthorized usage. Consequently, the first challenge is to
bypass these restrictions. While it may initially seem simple by em-
ploying the same license file as the one utilized in mobile apps, this
approach may prove ineffective and difficult to scale. Thus, the de-
velopment of a universal method to bypass all potential restrictions
associated with the steal of on-device ML models is challenging.

C2-How to Slice On-device ML Services Accurately. Once
the restrictions on reusing on-device ML services have been suc-
cessfully bypassed, the next challenge is how accurately recognize
and slice the components executing these services. The main dif-
ficulty in this task is determining the minimum necessary set of
components. This is crucial because a larger set of components
often necessitates additional configurations and preparations for
reusing. These include providing correct parameter values, trig-
gering a specific execution state, and facilitating data exchanges
between different components. For instance, consider the function
at line 26, which involves a complex process of parsing results.
As such, defining the minimum necessary components is far from
trivial, and as far as our knowledge extends, no attempts have been
made in the existing literature to address this challenge.

C3-How to Reuse On-device ML Services Correctly. Further-
more, even if the minimum execution components for reusing on-
device services have been identified, another challenge arises when
attempting to reuse these services without proper documentation.
In the running example, the initial function at line 2 and the analyze
function at line 5 are considered essential. However, automatically
determining the execution order and restoring their parameters
(e.g. “this.e" and “arg1") present significant challenges. Without
detailed information on component usage, including the parame-
ter value types and the execution order of related APIs, achieving
correct results when reusing these services becomes extremely diffi-
cult. Considering the potential utilization of custom data structures
among mobile apps, developing a generic approach to effectively
reuse on-device ML services is indeed a non-trivial task.

To address these challenges, we have the following insights:

ICSE ’24, April 14–20, 2024, Lisbon, Portugal
Pengcheng Ren1 , Chaoshun Zuo2 , Xiaofeng Liu1 , Wenrui Diao1

Qingchuan Zhao3 (B) , and Shanqing Guo1 (B)

1. Model Locating 2. Model Execution Slicing

Native Class

c.so

Slicing
JAVA Class

Dependency Graph Class Cluster

Generate

Script

3. Model Reusing

Instrument

UI Files

So Files

a.so

b.so

c.so

a.so

b.so

Code
 Snippet

Embedding Classifier

Models

Figure 2: Overview of DeMistify.

S1-Bypassing Restrictions and Slicing On-device ML Ser-
vice via Boundary Function Recognition: Considering the diffi-
culties associated with bypassing restrictions and tracing call logic
in on-device ML services, we propose a novel and generic approach
to identify boundary functions through slicing. These boundary
functions serve as the direct interfaces to invoke a target service
and enable the reuse of their own code with minimal effort. For-
tunately, boundary functions not only assist in accurately slicing
these services but also assist in bypassing license verification and
other usage restrictions. We have observed that these restrictions
are typically implemented as part of the boundary functions. (e.g., in
the running example, line 2 serves as a boundary function that can
bypass the restriction). An important insight we have regarding on-
device services is that they are often implemented in native libraries
to raise the barrier against attacks (e.g., reverse engineering). These
native libraries often expose limited interfaces (i.e., JNI) that are
formatted with outstanding features [13] (e.g., starting with Java_)
for communication between the code at the Java level. Leveraging
this limited number of JNIs, we propose to recognize the target
boundary functions by backward tracing.

S2-Reusing ML Services via Dynamic Instrumentation.
Once the boundary functions have been identified, our objective is
to invoke them in their original order and provide the appropriate
input parameters for effective reuse, thereby minimizing the risk of
failure. To accomplish this, we propose leveraging dynamic instru-
mentation to trigger the boundary functions at the appropriate time,
using our task-controlled parameter values. Furthermore, to deter-
mine the execution order of these boundary functions and parame-
ter values, we propose to rely on the inter-procedural call graph to
uncover the boundary function execution order. Additionally, we
employ static value set analysis to resolve the parameter values.

3.3 Threat Model
The consequences of model leakage are quite severe. First, training
a model consumes a lot of resources, and leaking a model can result
in a loss of intellectual property. Second, a leaked model makes it
easy for malicious actors to find adversarial inputs to bypass or
confuse ML systems that use the model, leading to a critical failure.
Attack Scenario. In this work, we assume that the attackers aim
to (i) steal and reuse the on-device ML models or (ii) attack the
associated AI tasks. In scenario (i), we assume that the attackers can
deploy the apps and reused scripts in the cloud, and encapsulate an
API for free use, and in scenario (ii), we assume that the attackers

can infinite query the reused scripts, construct adversarial examples
and send it to the victim apps without no conditions required.
Attack Capability. To achieve the above attack scenario, we as-
sume that the attackers can access and reverse the victim app from
markets and install them on a smartphone locally. In addition, re-
verse engineering tools (e.g., Soot [44] and Apktool [3]) have been
well developed and publicly available.

3.4 Scope and Assumptions
DeMistify is implemented as an automated tool to steal on-device
ML models and reuse associated services in Android apps. As such,
apps on other platforms (e.g., iOS) are out of scope. In addition,
DeMistify focuses on mobile apps that leverage native libraries to
use relevant models to perform on-device ML services. Therefore,
apps that entirely implement these tasks at the Java code level are
not covered in this study. Moreover, even though DeMistify is re-
silient to common obfuscations (i.e., identifier renaming), its current
version assumes that apps have not been heavily hardened that can-
not be unpacked by common tools (e.g., Soot [44] and Apktool [3]).

4 METHODOLOGY
This section presents the design details of DeMistify. As shown in
Figure 2, DeMistify consists of three primary components. The first
component is Model Locating (§4.1) which locates native libraries
that are able to process these models and detects the presence of
local ML models. The located native libraries are then taken as
inputs to the second component, i.e.,Model Execution Slicing (§4.2),
which aims to obtain program slicing to the minimum necessary
for the execution of particular on-device ML services. Finally, as
the third component,Model Reusing (§4.3) attempts to make use
of the slices to conduct their original tasks given legitimate inputs.

4.1 Model Locating
As the first component of DeMistify, Model Locating is designed
for two purposes, i.e., (𝑖) locating native libraries that are in charge
of conducting on-device services via processing ML models and (𝑖𝑖)
detecting the presence of these models for these services.

Although previous studies [48, 54] have demonstrated the effec-
tiveness of using a predefined dictionary for keyword matching
to detect on-device apps in native libraries (e.g., .so files), it faces
challenges in scalability andmay fail to detect new cases. To address
these limitations and propose a more reliable solution to locating
on-device ML services, inspired by native libraries often containing
sufficient information (e.g., prompt, log, and error output) as hints

DeMistify: Identifying On-device Machine Learning Models Stealing and Reuse Vulnerabilities in Mobile Apps ICSE ’24, April 14–20, 2024, Lisbon, Portugal

for development purposes, we suggest training an advanced repre-
sentation learning classifier that embeds these library descriptions,
effectively capturing the semantics. By identifying the semantics
of this information, we can effectively locate these services.
Ground-truth Dataset Construction.We need to build a ground
truth dataset for Model Locating to characterize apps performing
ML services with native libraries and models. However, to the
best of our knowledge, there are no existing public datasets of ML
apps and so files. Therefore, we use the qualitative open-coding
techniques [46] to determinewhether an app sample is anML app or
not. More specifically, two mobile security researchers with 5 years
of experience were asked to verify the apps following the guide as
elaborated below. First, the annotators decompile the app to view
the native functions which are likely ML services. If there is one,
the annotators notice the invocation of “System.loadLibrary("xx")”
to find out which .so file is the native function to be defined. Next,
the annotators search the descriptions from the .so file to find the
descriptions that indicate the ML services. Then, the annotators
view the resource files to find model files based on the suffix and
file path. Finally, the annotators annotate each app as ML or not
using two rules: (i) if the app contains AI-task native function
and description and (ii) if the app contains suspicious model files.
To eliminate bias, the annotators annotated independently and
then checked the consistency of the results. We present five apps
annotated by the annotator at Table 1.
Training the Classifier. We begin by annotating native library
descriptions that can be used to train themodel. For this, we selected
1000 apps with top installs for annotation. Specifically, we made
the above annotations on these apps and obtained a total of 54 ML
apps. We filtered them and obtained 18 typical ML apps containing
different ML libraries and services in several categories, and 40 non-
ML apps were randomly selected for descriptions annotated. Then
we extracted these libraries and preprocessed their descriptions,
which led to 101, 387 descriptions for training. After that, we labeled
the description of all non-ML libraries as false and used it to filter
the ML-related libraries, manually annotated the rest, and finally
get 3, 171 descriptions as true. Then we adopt the essential idea
in the Word2vec [36] and IotSPOTTER [25], represent each word
by embedding it as a numerical vector and train a classifier with
BiLSTM [6] by splitting the dataset into a training set, testing set,
and validation set with the ratio of 8:1:1. After that, this classifier
can give the confidence level of each description. To minimize the
false positives, we consider the library which has more than 10
descriptions with a confidence level greater than 0.8 as our interest.
In addition, we also adopt the string matching ideas adopted by [54]
to parse the file paths of apps complementary to detect models for
better coverage and identification success rate.

4.2 Model Execution Slicing
Once the target on-device ML models and their corresponding na-
tive libraries have been located, DeMistify aims to identify specific
code snippets for executing the target service. At a high level, Model
Execution Slicing first identifies the Java Native Interfaces (JNIs)

within the native libraries, next, leverages the identified JNIs to rec-
ognize and slice particular clusters of Java classes that perform tar-
get services, and finally, pinpoints the most relevant boundary func-
tions which can be reused to perform the task with minimal effort.
Identifying JNIs From Native Libraries. Since core operations
related to using local models are in native libraries [48, 54], which
are invoked by methods at the Java level via JNI, it will significantly
reduce the search space of functions at the Java level if identify-
ing these JNIs first and relying on them to find the functions of
our interests. To this end, Model Execution Slicing analyzes the .so
files related to ML model usages and searches for the JNIs, where
their names start with Java_, from all exported functions in a .so
file. Furthermore, since a native library may have dependencies on
other libraries, and these dependencies are declared in the dynamic
section with a reserved keyword of needed library, Model Exe-
cution Slicing follows these dependencies to exhaustively identify
all JNIs to avoid the potential of missing any cases.
Recognizing Java Classes for On-device ML. After identify-
ing JNIs from native libraries, Model Reusing can utilize them to
identify the minimum set of Java classes that contain methods for
invoking these JNIs. To achieve this, Model Reusing first constructs
a weighted Java class dependency graph (JCDG), next applies the
graph community detection algorithm to cluster these Java classes,
recognizes the clusters of Java classes that are of our interest and
slices these classes hierarchically to get the potential least effort.

Building theWeighted Java Class Dependency Graph. Taking inspi-
ration from [31] who introduced the concepts of density and attrac-
tiveness for weighted networks, Model Execution Slicing constructs
the weighted JCDG which is a directed graph and describes the
operational dependencies among Java classes, with each node rep-
resenting a Java class and each directed edge indicating the number
of method calls from the caller class to the callee class. Specifically,
the weight of a path is calculated based on the observation that
developers often implement a functionality through several sub-
tasks, and the codes to accomplish these tasks are often called close
to each other. In other words, classes with more call relationships
are much closer than those with less, which is a good representa-
tion of the relationship between classes. Besides, since we focus on
class dependencies, it is not enough to compute method dispatches
with the static type, we need to solve object-oriented program-
ming (OOP) language features (e.g., polymorphism) to obtain more
precise dependencies, as such, we built and optimized the context-
sensitive pointer analysis idea in FlowDroid [4] to get the runtime
type in function calls. Therefore, the weight of the directed path
(i.e.,𝑊𝑝𝑎𝑡ℎ) from caller class A (i.e.,𝐶𝐴) to callee class B (i.e.,𝐶𝐵) is:

𝑊𝑝𝑎𝑡ℎ (𝐶𝐴,𝐶𝐵) =
𝑛∈𝑚𝑒𝑡ℎ𝑜𝑑𝑠 (𝐴)∑︁

𝑖=1
𝑊𝑝𝑎𝑡ℎ (𝑀𝑖

𝐴,𝐶𝐵) (1)

𝑊𝑝𝑎𝑡ℎ (𝑀𝑖
𝐴,𝐶𝐵) =

𝑛∈𝑚𝑒𝑡ℎ𝑜𝑑𝑠 (𝐵)∑︁
𝑗=1

𝑊𝑝𝑎𝑡ℎ (𝑀𝑖
𝐴, 𝑀

𝑗

𝐵
) (2)

In particular, the algorithm of class closeness detection is shown
in algorithm 1 where 𝑁 is the set of nodes, 𝐸 denotes the set of
edges, and 𝑤𝐸 stands for the set of weights of edges. First, 𝑁 , 𝐸,
and𝑤𝐸 are initialized at line 2, and then it iterates every method in
the input set of system classes 𝐶𝑠 and puts the class name (𝑐𝑆𝑟𝑐) of

ICSE ’24, April 14–20, 2024, Lisbon, Portugal
Pengcheng Ren1 , Chaoshun Zuo2 , Xiaofeng Liu1 , Wenrui Diao1

Qingchuan Zhao3 (B) , and Shanqing Guo1 (B)

Table 1: Confirm Results of 5 Mobile Apps in Ground Truth.

Package Name Native Functions So name So Description Model Files ML app?

com.calliweb.lamaisonbleue detectFacesJni(..) libface_detector_v2_jni.so left_eye_closed contours.tfl
✓trackSingleFaceJni(..) Model data or file location is required to init FaceDetector blazeface.tfl

com.kepchat.androidv4 TrackingFace(..) libnama.so face_confirmation_softmax_threshold fa20160614.model ✓

com.vysionapps.face28 fuTrackFace(..) libface28.so facet category, unable to create facet for face_makeup.bundle ✓

com.momo.mobile.shoppingv2.android receiveDetections(..) libmlkitcommonpipeline.so coarse_classification_result_for_ocr mobile_object_localizer_anchors.pb ✓

consumer.danone.mum createModelWithBuffer(..) libtensorflowlite_jni.so Convolution does not support more than 1 runtime tensor diaper_detection.lite ✓

JNI Recognize

JCDG Clusters Interesting Classes

Figure 3: An Example of Recognize Java Classes.

each method if it calls an arbitrary method belonging to a class in
the class set𝐶 to the 𝑁 set at lines 3−6. Next, it continues to iterate
every method in a 𝑐𝑆𝑟𝑐 to find all callee methods 𝑐𝐷𝑒𝑠 , obtains the
class name 𝑐𝐷𝑒𝑠𝑁 of these callees, and creates an associated edge
at lines 7 − 11. Then, it updates the weight of the edge from 𝑐𝑆𝑟𝑐

to 𝑐𝐷𝑒𝑠𝑁 at lines 12 − 13. Finally, it passes the JCDG with nodes
to have the graph community detection at line 14.

Slicing Classes via Graph Community Detection. Finally, Model
Execution Slicing applies the popular graph community detection
algorithm [17] on the weighted JCDG to cluster Java classes and
detected the functional modular containing JNIs. This is because it
is used to detect the community in a graph where each community
contains several nodes that are more densely connected internally
than externally. As shown in Figure 3, this algorithm divides the
JCDG derived from the app in §3.1 into several clusters. By identi-
fying the JNI class name of “xxx.DaonFaceQuality”, we can isolate
the green cluster as our interesting. As such, the classes are the
minimum necessary components responsible for target services
and will be used to identify boundary functions. In addition, to
ensure the validity of clustering results (e.g., the current classes
contain false positives that can lead to wrong boundary functions),
Model Execution Slicing adopts extra hierarchical slicing to gener-
ate multiple possible outcomes according to the upper and lower
bounds obtained by the clusters. Although this may not represent
the minimum effort, this can ensure that the results are correct
as much as possible. Specifically, it starts at the upper bound and
deletes the outermost class at a time to generate candidate classes,
and repeats on the current result until only JNIs are left. To this end,
we can obtain several subclusters, representing different necessary
components to achieve model reuse.
Pinpointing Boundary Functions. After identifying the Java
classes responsible for delivering ML services with the least effort,

Algorithm 1: On-device DL/ML Classes Cluster
Input:𝐶𝑠 :system classes;
Output:𝐶 :cluster of JCDG;

1 GetSDKClass(𝐶𝑠) begin
2 𝑁, 𝐸, 𝑤𝐸 ← ∅
3 for 𝑐𝑆𝑟𝑐 ∈ 𝐶𝑠 do
4 𝑐𝑆𝑟𝑐𝑁 ←PkgName(𝑐𝑆𝑟𝑐)
5 𝑁 ← 𝑁 ∪ 𝑐𝑆𝑟𝑐𝑁
6 for 𝑓𝑚 ∈ GetMethods(𝑐𝑆𝑟𝑐) do
7 for 𝑓𝑐 ∈ GetCalls(𝑓𝑚) do
8 𝑐𝐷𝑒𝑠 ← GetClass(𝑓𝑐)
9 𝑐𝐷𝑒𝑠𝑁 ←PkgName(𝑐𝐷𝑒𝑠)

10 𝑒𝑑𝑔𝑒 ←GenEdge(𝑐𝑆𝑟𝑐𝑁, 𝑐𝐷𝑒𝑠𝑁)
11 𝐸 ← 𝐸 ∪ 𝑒𝑑𝑔𝑒
12 𝑤𝐸 [𝑒𝑑𝑔𝑒] ← 𝑤𝐸 [𝑒𝑑𝑔𝑒] + 1

13 𝑗𝑐𝑑𝑔←Graph(𝑁, 𝐸, 𝑤𝐸)
14 return CommunityDetection(𝑁, 𝑗𝑐𝑑𝑔, 0)

the final step for Model Execution Slicing is to pinpoint the bound-
ary functions which represent the highest-level functions that can
be invoked to perform the ML service without unnecessary side
effects. These boundary functions are designed to minimize the
required resources as input and trigger subsequent procedures with-
out additional configuration or data preparation. Crucially, these
functions cannot be invoked by any function within the classes in
a cluster, otherwise, it would indicate the presence of another high-
level function that is even closer to the boundary of the cluster. In ad-
dition, to avoid dead code, Model Execution Slicing applies another
rule that a boundary function must be invoked by at least one func-
tion that completely belongs to a different cluster. After that, the
functions of “DaonFace” and “getQuality” in the running example
will be considered as boundary functions to perform the next step.

4.3 Model Reusing
After identifying the boundary functions, DeMistify proceeds to
perform two subtasks to facilitate the reuse of the corresponding
on-device services: (𝑖) generating reuse scripts and (𝑖𝑖) successfully
reusing target services via dynamic instrumentation.
Generating Reuse Scripts. As the first step of Model Reusing, two
problems need to be solved. First, it would be insufficient if only
identify all boundary functions without specific orders; otherwise,
it is possible that the target ML task would not be triggered prop-
erly. Second, these functions cannot be executed without giving the
correct parameters. Therefore, Model Reusing determines the exe-
cution orders by traversing the inter-procedural control-flow graph

DeMistify: Identifying On-device Machine Learning Models Stealing and Reuse Vulnerabilities in Mobile Apps ICSE ’24, April 14–20, 2024, Lisbon, Portugal

(ICFG) and reconstructs the parameters by backward tracking the
inter-procedural data-flow graph (IDFG). Considering that these
two steps need precise analysis to deal with OOP language features.
To this end, we also use the aforementioned context-sensitive pointer
analysis technique to construct the graphs.

Orders Determined by Traversing The ICFG. The Android oper-
ating system provides a large set of callbacks for mobile apps to
use to accomplish a variety type of asynchronous tasks in the
background. Given this multi-threading nature in Android apps,
Model Reusing first utilize FlowDroid [4] to generate the main
entrance (e.g., dummy function), then Model Reusing determines
the execution order of boundary functions by traversing the ICFG.
Particularly, starting from the main entrance, Model Reusing simu-
lates the execution of function blocks and tracks each statement,
and maintains object type operation, such as new, assignment, and
return, when encountering a function call, it will track the real func-
tion call based on the current runtime object type, and determine
the boundary function orders by the visiting order.

Reconstructing parameters by tracing backward. After determin-
ing the execution order of these boundary functions, Model Reusing
is required to provide sufficient and accurate values to the parame-
ters of all boundary functions. In particular, Model Reusing recon-
structs the values to these parameters by traversing in the backward
direction of the inter-procedural data-flow graph (IDFG). This pa-
rameter reconstruction procedure is performed with the following
systematic strategies to optimize the whole framework.

(I) Constant Values. Values to some parameters could be constant
values, such as hardcoded strings. For these parameters, the corre-
sponding strategy is to resolve such values even in the case that
they are generated via complicated computations, e.g., splitting,
concatenation, and etc.

(II) Variable Values. In cases of variable values, static-based solu-
tions to resolve values may not be able to produce concrete values.
Therefore, based on the declared types of parameters in on-device
ML boundary functions, Model Reusing addresses these variable
values with the following two strategies.

• Pre-defined Termination Types: Some variable values are gener-
ated outside the app and serve as input(e.g., the data structure
of bitmap is to accept the data of an image captured by the
camera). As such, we first divide the inputs into four types
according to the ML service [12], namely image, voice, video,
and text. These inputs are always collected through system
API calls, so we consulted the developer documentation one
by one according to the input type, there are 11 APIs (listed
in Table 2) in total to handle these tasks. Therefore, instead of
intending to resolve the actual values, Model Reusing would
like to uncover the pre-defined types of the data structures if
they are designed to accept values from the outside.
• Return Values of Other Methods: Some other variable values
that are generated within the app may also be difficult to
resolve if they are the return values of other methods. Since
these methods may not be included in the clustered Java
classes obtained in §4.2, Model Reusing also has to execute
suchmethodswith appropriate parameter values, whichmakes
this procedure an iterative one. For example, boundary func-
tion A requires a parameter, but this parameter is the return

Table 2: Targeted Types for Termination.

Type Class API

Input

Bitmap createBitmap(int[], int, int,...)
BitmapFactory decodeFile(String)
Media getBitmap(ContentResolver, Uri)

AudioRecord read(short[],int,int)
AudioRecord read(byte[],int,int)
AudioRecord read(java.nio.ByteBuffer,int)

PictureCallback onPictureTaken(byte[], Camera)
PreviewCallback onPreviewFrame(byte[], Camera)

EditText getText()
EditText getEditableText()
Editable toString()

var path = "pic -1. jpg";
// convert to bitmap
var file = Java.use('java.io.File').$new(path);
var FS = Java.use('java.io.FileInputStream ').$new(file);
var bitmap = Java.use('android.graphics.BitmapFactory ').

decodeStream(FS);
. . .
// boundary function #1
var s33124763 = Java.use('com.google.android.gms.vision.

face.FaceDetector$Builder ').build();
s33124763.isOperational ()
// boundary function #2
var s696379067 = Java.use('com.google.android.gms.vision.

Frame$Builder ').$new();
s696379067.setBitmap(bitmap); // input
var s1845700457 = s33124763.detect(s696379067);
. . .

Listing 1: Reusing Script Generated by Demistify

value of non-boundary function B. The simplest way is to
call the B function to get this return value, but if B needs to
pass parameters, Model Reusing also needs to process these
parameters. To optimize this iterative process to avoid legacy
static analysis problems (e.g., path explosion), Model Reusing
only repeats the process within a loop once and terminates
at methods that entirely generate values depending on the
outside resources (e.g., network response) having no direct
relationship to target tasks.

Model Reuse via Dynamic Instrumentation. Upon generating
the model reuse scripts, the final step for Model Reusing is to reuse
the target on-device services and verify the success. To gain a clearer
understanding of how the reuse scripts are executed, we present
the key components of a script generated by DeMistify in Listing 1.
In this script, the path specifies the default image configured for
each test trial, which is utilized for reusing the on-device model.
Additionally, every boundary function is appropriately prepared for
triggering. Subsequently, DeMistify automatically installs the rele-
vant application, restarts it, injects the script using Frida [15], and
collects the results without requiring any additional configuration.

5 EVALUATION
In this section, we evaluate DeMistify and answer the following
research questions based on experimental results.
• RQ1: How does DeMistify perform on a large scale?
• RQ2: How effective is DeMistify? We address this question
by considering three sub-questions:

ICSE ’24, April 14–20, 2024, Lisbon, Portugal
Pengcheng Ren1 , Chaoshun Zuo2 , Xiaofeng Liu1 , Wenrui Diao1

Qingchuan Zhao3 (B) , and Shanqing Guo1 (B)

– RQ2.a: How effective are the components of DeMistify?
– RQ2.b: What is the reuse ability of DeMistify?
– RQ2.c: Is DeMistify highly resilient to model protection
and code obfuscation?

5.1 Implementation and Experiment Setup
We implemented DeMistify with more than 700 lines of Python
code and around 6500 lines of Java code. The implementation of the
Model Locating depends on a few libraries: we use apktool [3] to
collect the libraries from apps, strings command to extract descrip-
tions, Word2vec [36] to train an embedding, and BiLSTM [6] to train
the classifier. In the Model Execution Slicing, it leverages the readelf
command to extract all exported functions in every .so file and
then depends on Soot [44] to build the JCDG and cluster the classes.
For the Model Reusing, it depends on Soot [44], FlowDroid [4],
and Frida [15] to build ICFG, resolving parameters, dynamically
instrument code reuse scripts, monitor the completion of model
reuse code execution, and return the consequent results.
Evaluation Environment. The experiments are conducted on two
servers. One is equipped with an Intel Xeon Gold 5215 CPU with
512GBmemory running Ubuntu 18.04. This server crawls apps from
Google Play and analyzes them with DeMistify. The other has an
Intel i7-9700 3.00 GHz CPU with 16GB memory running Windows
10. It is connected to one Pixel 2 smartphone running Android 11
to evaluate the effectiveness of the generated reusing scripts.

5.2 RQ1: Scalability of DeMistify
This section presents the accuracy verification, the dataset collec-
tion, and the distribution analysis of ML SDKs and frameworks.
Identifing Accuracy and Precision of ML Apps. To establish
the ground truth for our evaluation, we initially executed Mod-
elXRay [48] based on the install numbers from our dataset until we
got 152 apps labeled as ML apps and 152 non-ML apps. Then, we
manually verified all 304 apps and adjusted the labels as our ground
truth based on (§4.1), resulting in 138 apps as ML and 166 apps as
non-ML. We evaluated [48] and DeMistify on these apps, and the
results showed that [48] achieved an accuracy of 89.5% with a false
negative (FN) rate of 6.5% and a false positive (FP) rate of 13.8%. We
conducted further analysis on the FP and FN cases of [48]. In FN,
we found that these apps use unpopular ML frameworks whose
keywords are not in the string dictionary, besides, in FP, there are
some strings that are matched incorrectly (e.g., PatternNode is a
match for rnn) and some libraries only contains individual strings
but does not provide ML services. In contrast, DeMistify overcame
these limitations and achieved an accuracy of 98.4% with only 1.4%
FN and 1.8% FP. In terms of precision, [48] achieved 84.9% precision,
while DeMistify achieved 97.8%, this relatively high accuracy and
precision shows DeMistify is suitable for large-scale study.
Efficiency of DeMistify.We evaluate the runtime overhead of [48]
and DeMistify on ML app identification with 50 parallel processes.
On average, it takes 8.42 seconds for DeMistify to process an app
in our dataset, comparable to [48] (i.e., on average, 6.96 seconds
to process an app). We also evaluate the runtime of DeMistify on
Model Reusing, it only takes 63.27 seconds and 1.26G memory on
average for DeMistify to generate a reuse script. The reason it
is so efficient is because, we only use FlowDroid [4] to generate

Figure 4: Distribution of Framework and SDK over Category.

entry points, bypassing a lot of its time-consuming operations. This
proves that DeMistify can be used to analyze large-scale apps.
Dataset Collection. The dataset used in this study comprises a
total of 427,471 top free Android apps sourced from Google Play
across 27 categories based on their install numbers as of September
2021. Furthermore, out of the nearly 420-thousand apps, we applied
semantic analysis in §4.1 and supplemented it with the algorithm
proposed in a previous study [48] which relied on keyword match-
ing for on-device ML app and model recognition, resulting in the
identification of 2,207 apps that provide on-device ML services.
Subsequently, we manually inspected, installed, and ran these iden-
tified apps, filtering out those with garbled code, crashes, and no
relevant service identification. Ultimately, we verified and included
1511 apps in our test dataset. It’s worth noting that throughout the
entire process, only one person was involved. On average, this per-
son spent at least 7 minutes per app, with approximately 5 minutes
for viewing and 2 minutes for installation and execution.
Generality of DeMistify on different ML SDK and Framework.
To assess the generality of DeMistify, we examined the distribution
of 1,511 apps. By summarizing the package names as SDKs and
inferring the library descriptions as frameworks, we identified a
total of 11 known frameworks and 118 SDKs. Among them, 20 SDKs
were implemented in more than three apps. We also plotted them in
Figure 4 to visualize the distribution of these SDKs and frameworks
across different categories. It is obvious that DeMistify is robust in
large-scale detection rather than focusing on specific frameworks
or SDKs and can conduct comprehensive analysis across various
frameworks and SDKs.

DeMistify: Identifying On-device Machine Learning Models Stealing and Reuse Vulnerabilities in Mobile Apps ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 3: Overall Effective Evaluation Results.

Item Value

DL/ML Apps Tested 1,511

Models 15,435

JNI 3,630

JCDG 1,511
Nodes 21,664,793
Edges 87,495,777
Clusters 1,981,850

Java Classes 39,456
Boundary Functions 14,483

Dead Code 3,301
Active Functions 11,182

Lifecycle Callback 1,964
Ave. Funcs in Callback 5.69

Traced Parameters 19,051
Constants 1,208
Termination 2,539
Return Value 15,304
Ave. Depths 2.51

Reuse Succeed Apps 1250
Success Rate 82.73%

5.3 RQ2: Effectiveness Evaluation of DeMistify
5.3.1 RQ2.a: How effective are the components of DeMistify?
This section presents the effectiveness evaluation of DeMistify in
Table 3, and the details of each component are presented as follows.
Effectiveness of Model Locating. The objective of Model Locat-
ing is to identify the presence of target on-device ML services and
locate their native implementations. In the evaluation of 1,511 apps,
this component has successfully recognized 3,630 JNI classes that
are closely associated with the target on-device services. Further-
more, it has identified a total of 15,435 models from all the apps,
averaging approximately 10 models per app.
Effectiveness ofModel Execution Slicing.After recognizing and
locating on-device ML services in native implementations, Model
Execution Slicing focuses on identifying and slicing the minimum
necessary implementations at the Java level for reuse. In this pro-
cess, Model Execution Slicing generates a total of 1,511 JCDGs, with
each JCDG generated for a specific mobile app. These JCDGs consist
of 21,664,793 nodes (representing unique Java classes within each
app), 87,495,777 edges, and 1,981,850 clusters. Additionally, Model
Execution Slicing identifies 39,456 classes that are directly involved
in performing on-device ML services. These classes encompass both
individual development classes and commercial SDKs. Among these
classes, 14,483 boundary functions have been pinpointed. To ana-
lyze these boundary functions further, using the methods proposed
in §4.2, DeMistify has identified 3,301 boundary functions that are
never invoked and are considered dead code. Among the remaining
boundary functions, 11,182 active boundary functions are catego-
rized into 1,964 lifecycle callbacks (on average 5.69 functions in
each callback) which are used to recognize their execution orders.
Effectiveness of Model Reusing. In Model Reusing, the value
parameters for the detected boundary functions are resolved, and
reusing scripts are generated accordingly. Specifically,Model Reusing
successfully resolves 19,051 parameters for 11,182 active boundary
functions. It addresses 1,208 constant values, identifies 2,539 pre-
defined termination parameter types, and resolves 15,304 values

that are returned by arbitrary methods. On average, each return
value requires the component to trace back 2.51 steps in depth.

To investigate the accuracy of these results, we randomly selected
10 apps, manually reused them, and compared the statistical results
withDeMistify. Specifically, Model Locating reports 86 models with
one false positive and zero false negative. As for the recognized JNIs,
Model Execution Slicing reports 21 JNIs with three false positives,
due to they are utility classes declared in ML native libraries. When
considering the active boundary function, Model Execution Slicing
collects 44 active boundary functions with nine false positives and
one false negative. However, these false positives are some config-
uration functions, which did not have any impact on the results.
As for the false negative, it was identified as dead code, which was
caused by the limitations of pointer analysis on reflection.

5.3.2 RQ2.b: What is the reuse ability of DeMistify?
After manually verifying the success of reusing on-device ML

services, which return the expected results, DeMistify successfully
reuses 1250 out of 1,511 apps in the test dataset, achieving a suc-
cess rate of 82.73%. Additionally, we measured the informativeness
of the results and found that 90.3% of the reusable apps contain
rich quantitative and multidimensional information that can be
exploited by adversary attacks. The remaining apps are mainly
related to background editing, which directly returns the editing
results (e.g., removing the background). This is because DeMistify
slices the functional modules of ML service and retains the most
original data of inference results which will be further processed by
the app. In particular, Table 4 shows the detail of our model reusing
results of the top 10 reusable mobile apps as examples to show
how we determine if the reuse was successful. The table includes
the package name of the app, the reused service, the associated
input, the original detection result, and the result obtained in our
reusing evaluation, which is classified as either correct or wrong.
If the original and reused results match, we consider the model
reuse to be successful. Even small partial differences in the results
would lead to the conclusion that reusing has not been achieved. As
expected, all on-device ML models in these apps were successfully
reused, regardless of their different functionalities.

Regarding the failed apps, we conducted a manual analysis of the
top 50 apps and summarized the failure reasons. At a high level, the
primary cause of failure can be attributed to limitations in the tools
used. Specifically, six apps failed due to an incomplete call-graph
generated by FlowDroid [4], eight apps encountered limitations in
Frida [15], where seven apps contained garbled code that couldn’t
be resolved, five execution timeouts, and one instrumentation fail-
ure. Furthermore, there were five cases where failure resulted from
the absence of local models despite the presence of native libraries.
Additionally, two apps failed because we couldn’t provide appropri-
ate inputs, electrocardiography, and road condition. Lastly, out of
the remaining apps, seven apps had issues with correctly resolving
parameters, six apps had incorrect class clustering, and ten apps
failed to produce valid outputs. Among these, five apps failed to
generate any output when used, while the other five apps belonged
to the same SDK provider but utilized a unique implementation
that significantly differed from the others.

5.3.3 RQ2.c: Is DeMistify highly resilient to model protection
and code obfuscation?

ICSE ’24, April 14–20, 2024, Lisbon, Portugal
Pengcheng Ren1 , Chaoshun Zuo2 , Xiaofeng Liu1 , Wenrui Diao1

Qingchuan Zhao3 (B) , and Shanqing Guo1 (B)

Table 4: Reuse results of Top 10 Reusable Mobile Apps Providing Different On-device ML Services.

Package Name Reuse Service Input Subtask Original detection Reuse detection Correct?

com.commsource.beautyplus Selfie editing Selfie image FaceRect (71.0, 81.0, 193.0, 203.0) (71.0, 81.0, 193.0, 203.0) ✓
FaceCount 1 1 ✓

com.videoplayer.livetalk Video chat Facial image or frame

FaceRect (37.23, 49.01) + 181.52 (37.23, 49.01) + 181.52 ✓
IsSmiling 0.007 0.007 ✓
IsEyesOpen 0.99 0.99 ✓
Landmarks (95.01, 120.73) (95.01, 120.73) ✓

makeup.selfiecamera.beautycam.beautyplus Selfie editing Selfie image FaceRect (𝐿 : 44,𝑇 : 77, 𝑅 : 193, 𝐵 : 226, 𝐿𝑎𝑏𝑒𝑙 : 𝑓 𝑎𝑐𝑒) (𝐿 : 44,𝑇 : 77, 𝑅 : 193, 𝐵 : 226, 𝐿𝑎𝑏𝑒𝑙 : 𝑓 𝑎𝑐𝑒) ✓
Landmarks (𝑃𝑜𝑖𝑛𝑡 (46, 125) ...𝑃𝑜𝑖𝑛𝑡 (124, 185)) (𝑃𝑜𝑖𝑛𝑡 (46, 125) ...𝑃𝑜𝑖𝑛𝑡 (124, 185)) ✓

com.camera.mi9 Face enhancement Facial image or frame

FaceRect (39.86, 52.85) + 173.38 (39.86, 52.85) + 173.38 ✓
IsSmiling 0.007 0.007 ✓
IsEyesOpen 0.99 0.99 ✓
Landmarks (97.77, 121.75) (97.77, 121.75) ✓

com.faceenhancer.android Selfie editing Selfie image FaceRect (𝐿 : 64,𝑇 : 92, 𝑅 : 188, 𝐵 : 216, 𝐿𝑎𝑏𝑒𝑙 : 𝑓 𝑎𝑐𝑒) (𝐿 : 64,𝑇 : 92, 𝑅 : 188, 𝐵 : 216, 𝐿𝑎𝑏𝑒𝑙 : 𝑓 𝑎𝑐𝑒) ✓
Landmarks (𝑃𝑜𝑖𝑛𝑡 (53, 120) ...𝑃𝑜𝑖𝑛𝑡 (124, 197)) (𝑃𝑜𝑖𝑛𝑡 (53, 120) ...𝑃𝑜𝑖𝑛𝑡 (124, 197)) ✓

com.face.gender.changer.faceapp Transform gender Facial image FaceRect (𝐿 : 32,𝑇 : 52, 𝑅 : 212, 𝐵 : 231, 𝐿𝑎𝑏𝑒𝑙 : 𝑓 𝑎𝑐𝑒) (𝐿 : 32,𝑇 : 52, 𝑅 : 212, 𝐵 : 231, 𝐿𝑎𝑏𝑒𝑙 : 𝑓 𝑎𝑐𝑒) ✓
Landmarks (𝑃𝑜𝑖𝑛𝑡 (41, 119) ...𝑃𝑜𝑖𝑛𝑡 (129, 192)) (𝑃𝑜𝑖𝑛𝑡 (41, 119) ...𝑃𝑜𝑖𝑛𝑡 (129, 192)) ✓

com.ophotovideoapps.facenhancer Selfie editing Selfie image FaceRect (𝐿 : 32,𝑇 : 52, 𝑅 : 212, 𝐵 : 231, 𝐿𝑎𝑏𝑒𝑙 : 𝑓 𝑎𝑐𝑒) (𝐿 : 32,𝑇 : 52, 𝑅 : 212, 𝐵 : 231, 𝐿𝑎𝑏𝑒𝑙 : 𝑓 𝑎𝑐𝑒) ✓
Landmarks (𝑃𝑜𝑖𝑛𝑡 (71, 120) ...𝑃𝑜𝑖𝑛𝑡 (111, 199)) (𝑃𝑜𝑖𝑛𝑡 (71, 120) ...𝑃𝑜𝑖𝑛𝑡 (111, 199)) ✓

com.playdigital.modo Document scan Document image DocRect (𝑅𝑒𝑐𝑡𝐹 (1.5184212, 3.2016373, 318.8564, 218.48717)) ([0]𝑑𝑜𝑐𝑠 (81.5%)𝑅𝑒𝑐𝑡𝐹 (1.5184212, 3.2016373, 318.8564, 218.48717))
✓([1]𝑑𝑜𝑐𝑠 (18.2%)𝑅𝑒𝑐𝑡𝐹 (21.968193, 76.56427, 319.31763, 209.98932))

et.song.newVSUFO.wifi.app.air.h264 Gesture Recognize Frame Control take photo take photo ✓
video record video record ✓

com.smithandsons.cutpaste.photoeditor Backgroud replace Any image
Foreground foreground image foreground image ✓
Backgroud grayscale image grayscale image ✓
Masks 𝑏𝑦𝑡𝑒 [] (...0, 0, 0, 1, 1, 1, 1, 1, 1...0, 0, 1...) 𝑏𝑦𝑡𝑒 [] (...0, 0, 0, 1, 1, 1, 1, 1, 1...0, 0, 1...) ✓

On-device ML Models Protection. In terms of model protection,
we collected 15,435 models and evaluated them with different pro-
tection types i.e., plaintext, encrypted with entropy higher than
7.99 [48], and custom format which cannot be parsed by common
frameworks [12]. The evaluation results indicate that 61% of the
models are in plaintext, while the remaining 39% of the models
adopt protection measures. Among the protected models, 37% are
in a custom format, and 2% are encrypted. Additionally, we assessed
the rate of app-level adoption of model protection. Approximately
26.54% of the apps employ plaintext models, 5.62% of the apps utilize
encrypted models, and the remaining 67.84% of the apps contain
custom format models. Note that, DeMistify is task-oriented rather
than model-oriented. Therefore, we evaluated the success rate on
apps where multiple on-device models perform the same task col-
lectively. As shown in Table 5, 978 of under protection can still
be successfully reused using DeMistify. This is because DeMistify
focuses on the functional modules rather than the specific model
itself, making it highly resilient to model protection measures.
On-device ML Apps Protection. We would like to understand
how the identifier renaming obfuscation affects the success rate,
which can hide meaningful information and resist some adversary
attacks that rely on plaintext string of standardAPI [12].We use [38]
to detect obfuscated apps, which depends on soot [44] to identify
this obfuscation by analyzing whether the proportion of short class
names reaches a threshold. Note that app obfuscation and model
encryption are two different things. An obfuscated app can use
an unencrypted model, and an app without using obfuscation can
also use an encrypted model. As shown in Table 5, 88.43% of 821
obfuscated apps can be reused and 690 apps are at risk of standard
API extraction with 75.94% can be reused. Because DeMistify only
depends on modular slicing and doesn’t rely on the string infor-
mation during reusing, the confusion doesn’t affect success rates,
hence, DeMistify is highly resilient to code obfuscation.

Table 5: Statistics of Reusable.

Item Value Reusable

Apk Tested 1511 1250 (82.73%)

Non-Obfuscation 690 524 (75.94%)
Obfuscation 821 726 (88.43%)

Plaintext 401 274 (68.33%)
Flatbuf 171 122 (71.35%)
ProtoBuf 217 146 (67.28%)
Text 13 4 (30.77%)

Encrypt 85 38 (44.71%)
Customized format 1025 940 (91.71%)

6 DISCUSSION
Case Study in Adversarial Attack. Previous research on black-
box adversarial attacks has been focused on the cloud, they rely
on the query to train surrogate models, and their effectiveness
is largely limited by the number of queries. However, DeMistify
overcomes this restriction, which means DeMistify can obtain a
higher fidelity surrogate model with infinite queries. Therefore, We
discuss the promising use cases of DeMistify. Specifically, we select
a victim app (Ton) that uses a popular SDK provided by Google
with more than 100, 000 installs. In particular, it takes a facial image
as input and returns the information of smiling probability, eye
open probability, and face landmark.

Then we leverage DeMistify to generate the reuse script and
run the associated on-device ML services of smiling probability for
all facial images in CelebA-HQ [32] and collect the corresponding
results. Finally, we train a surrogate model with different sizes of
training sets, eight sizes evenly increase from 3,000 to 24,000, and
construct an adversarial attack with FGSM [18]. Figure 5 shows the
attack success rate with different scales, and it shows the attack suc-
cess rate presents an upward trend. It seems the decision boundary
of the victim model and surrogate model is closer with the train-
ing set greater. In other words, without the limitation, DeMistify
reveals a much higher security risk.

DeMistify: Identifying On-device Machine Learning Models Stealing and Reuse Vulnerabilities in Mobile Apps ICSE ’24, April 14–20, 2024, Lisbon, Portugal

3000 6000 9000 12000 15000 18000 21000 24000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

At
ta

ck
 S

uc
ce

ss
 R

at
e

0.74

0.11

0.54

0.13

0.50

0.24

0.55

0.27

0.51

0.23

0.54

0.29

0.53

0.41

0.60

0.42

Attack Surrogate
Attack Original

Figure 5: Success Rate Comparison Of Different Dataset.

Limitations. While we wish we could make DeMistify perfect, its
current prototype still contains three limitations. First, DeMistify
operates under the assumption that apps providing on-device ML
services will statically carry their models. While this assumption
holds true for themajority of cases, there are instances where an app
is designed to retrieve models from its server during its first initial-
ization. Second, as DeMistify is built on top of several open-source
tools and frameworks, it inherits some of their limitations, such
as incomplete graphs generated by FlowDroid [4], unrecognized
special symbols in Soot [44] and Frida [15], as well as execution
timeouts resulting from these tools. These limitations could render
DeMistify incapable of reusing target services in certain apps. Third,
sinceDeMistify relies on the generation of intermediate results (e.g.,
JNIs, boundary functions), limited by pointer analysis techniques
(i.e., reflection-related problems), there could be some false positives
and negatives, although in most cases there is no impact, it may
still lead DeMistify to generate wrong reuse scripts in some cases.
Threats to Validity. The internal threats to validity are the im-
plementations of our technique, the ground truth, and the bias in
success rate. Our technique is simple and easy to implement and its
core part is based on popular tools. Also, we will release our code
for future studies. All the rules on ground truth and verification are
present in this paper. For the comparison tool, we directly use the
released version in [48]. The external threats to validity come from
the selected datasets for our evaluation. Our collection of datasets is
entirely dependent on the number of installs on Google Play based
on their percentage in different categories and was downloaded the
latest version before we started our study from androzoo.

7 RELATEDWORK
MLModel Extraction andAnalysis.Alongside the rapid progress
of ML technique and evolution in mobile hardware, their conse-
quent security problems have started to receive attentions from
the academia [9, 24, 28]. However, the majority of these works fo-
cus on the models in the cloud including both directly predicting
the property of models via relevant APIs [27, 49, 51] and steal-
ing models from the side-channel, such as cache [19, 55], energy
consumption [5, 53]. Regarding on-device models, only a few stud-
ies have been proposed, leaving this field largely unexploited. In
particular, these works propose methods to identify deep learning
apps via keywords in the path [48] and the file suffix [54], and
solutions to distinguish encrypted model files from those in plain-
text via entropy and also how to decrypt them when they are at

rest or being loaded into the memory [48], or evaluate adversary
attacks by tracing inference functions in plaintext [12] and using
the highly similar fine-tuned model from TensorFlow Hub as an
alternative [22] and train the surrogate model [21]. Different from
these works, we focus on model reuse attacks, our work proposes
a powerful toolkit that is generic to different frameworks and mod-
els, allowing analysts to analyze on-device ML in a given mobile
application without any information.
ML Model Protection. Since ML models are always believed to
be a core intellectual property, the field of research on how to
protect them from being stolen and unauthorized usage has been
devoted a tremendous amount of efforts. In particular, these works
intend to protect models in the cloud. For example, some solutions
leverage trust computation techniques including homomorphic en-
cryption [7, 16, 37] to prevent attackers from directly monitoring
sensitive data related to the model property which could be used for
model reverse engineering. In addition, some other solutions intend
to identify whether models in the cloud are in the process of being
stolen by monitoring relevant API usages [26, 27]. Moreover, some
works also focus on identifying unauthorized usage of ML models
via water-marking techniques [2, 57]; however, such a technique
may only work in a limited category of application. Our work is
designed to facilitate these analysis on on-device ML practices.
ProgramAnalysis inMobile Apps. There have beenmany efforts
to conduct program analysis in mobile apps for security purposes.
At a high level, they are either static analysis [4, 10, 35, 50, 52, 59, 60]
and dynamic analysis [1, 14, 30, 34, 42, 43, 45, 61]. Unlike these
works that entirely focus on Java-level implementations, our work
conduct analysis on code at both Java and native level.

8 CONCLUSION
This study introduces a novel methodology and develops an au-
tomated tool (i.e., DeMistify) to detect model stealing and reuse
attacks in mobile apps that utilize local ML models for task delivery.
The proposed tool utilizes a combination of static and dynamic pro-
gram analysis techniques to identify the minimum set of relevant
APIs for AI tasks, generate appropriate input values, and dynami-
cally verify the presence of model reuse vulnerabilities. Evaluation
of the tool on 1,511mobile apps containing local ML models demon-
strates a reuse success rate of 82.73%. Additionally, the analysis
uncovers key participants in the on-device DL/ML service ecosys-
tem and highlights DeMistify’s ability to uncover security threats.

ACKNOWLEDGMENTS
We sincerely thank all anonymous reviewers for their construc-
tive feedback. This work was partly supported by CityU APRC
grant 9610563, the Research Grants Council of Hong Kong (CityU
21219223, C1029-22G), National Natural Science Foundation of
China under Grant No.62372268, Shandong Provincial Natural Sci-
ence Foundation (No. ZR2020MF055, No.ZR2021LZH007, No.ZR202-
2LZH013 and No.ZR2020QF045), and Jinan City “20 New Univer-
sities” Funding Project (2021GXRC084). Any opinions, findings,
and conclusions in this paper are those of the authors and do not
necessarily of supported organizations.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal
Pengcheng Ren1 , Chaoshun Zuo2 , Xiaofeng Liu1 , Wenrui Diao1

Qingchuan Zhao3 (B) , and Shanqing Guo1 (B)

REFERENCES
[1] 2017. UI/Application Exerciser Monkey. https://developer.android.com/tools/

help/monkey.html.
[2] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet.

2018. Turning your weakness into a strength: Watermarking deep neural net-
works by backdooring. In 27th {USENIX} Security Symposium ({USENIX} Security
18). 1615–1631.

[3] Apktool. [n. d.]. A tool for reverse engineering 3rd party, closed, binary Android
apps. https://ibotpeaches.github.io/Apktool/.

[4] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.

[5] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. 2018. CSI neural
network: Using side-channels to recover your artificial neural network informa-
tion. arXiv preprint arXiv:1810.09076 (2018).

[6] Keras Bidirectional. [n. d.]. https://keras.io/api/layers/recurrent_layers/
bidirectional/.

[7] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Prac-
tical secure aggregation for privacy-preserving machine learning. In proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
1175–1191.

[8] Hongchen Cao, Shuai Li, Yuming Zhou, Ming Fan, Xuejiao Zhao, and Yutian
Tang. 2021. Towards Black-box Attacks on Deep Learning Apps. arXiv preprint
arXiv:2107.12732 (2021).

[9] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks. ACM SIGARCH
Computer Architecture News 44, 3 (2016), 367–379.

[10] Hyunwoo Choi, Jeongmin Kim, Hyunwook Hong, Yongdae Kim, Jonghyup Lee,
and Dongsu Han. 2015. Extractocol: Automatic Extraction of Application-level
Protocol Behaviors for Android Applications. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication (London, United
Kingdom) (SIGCOMM ’15). ACM, New York, NY, USA, 593–594. https://doi.org/
10.1145/2785956.2790003

[11] Jacson Rodrigues Correia-Silva, Rodrigo F Berriel, Claudine Badue, Alberto F de
Souza, and Thiago Oliveira-Santos. 2018. Copycat cnn: Stealing knowledge by
persuading confession with random non-labeled data. In 2018 International Joint
Conference on Neural Networks (IJCNN). IEEE, 1–8.

[12] Zizhuang Deng, Kai Chen, Guozhu Meng, Xiaodong Zhang, Ke Xu, and Yao
Cheng. 2022. Understanding Real-world Threats to Deep Learning Models in
Android Apps. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security.

[13] JNI Doc. [n. d.]. https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/
design.html#wp16696.

[14] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. 2014.
TaintDroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM TOCS 32, 2 (2014), 5.

[15] Frida. [n. d.]. A world-class dynamic instrumentation framework. https:
//frida.re/.

[16] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. In International conference on machine
learning. PMLR, 201–210.

[17] Michelle Girvan and Mark EJ Newman. 2002. Community structure in social and
biological networks. Proceedings of the national academy of sciences 99, 12 (2002),
7821–7826.

[18] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[19] Sanghyun Hong, Michael Davinroy, Yiǧitcan Kaya, Stuart Nevans Locke, Ian
Rackow, Kevin Kulda, Dana Dachman-Soled, and Tudor Dumitraş. 2018. Security
analysis of deep neural networks operating in the presence of cache side-channel
attacks. arXiv preprint arXiv:1810.03487 (2018).

[20] Jiayi Hua, Yuanchun Li, and Haoyu Wang. 2021. MMGuard: Automatically
Protecting On-Device Deep Learning Models in Android Apps. In 2021 IEEE
Security and Privacy Workshops (SPW). IEEE, 71–77.

[21] Yujin Huang and Chunyang Chen. 2022. Smart app attack: hacking deep learning
models in android apps. IEEE Transactions on Information Forensics and Security
17 (2022), 1827–1840.

[22] Yujin Huang, Han Hu, and Chunyang Chen. 2021. Robustness of on-device mod-
els: Adversarial attack to deep learningmodels on android apps. In 2021 IEEE/ACM
43rd International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). IEEE, 101–110.

[23] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Emmett
Witchel. 2018. Chiron: Privacy-preserving machine learning as a service. arXiv
preprint arXiv:1803.05961 (2018).

[24] Andrey Ignatov, Radu Timofte, Andrei Kulik, Seungsoo Yang, Ke Wang, Felix
Baum, Max Wu, Lirong Xu, and Luc Van Gool. 2019. Ai benchmark: All about
deep learning on smartphones in 2019. In 2019 IEEE/CVF International Conference
on Computer Vision Workshop (ICCVW). IEEE, 3617–3635.

[25] Xin Jin, Sunil Manandhar, Kaushal Kafle, Zhiqiang Lin, and Adwait Nadkarni.
2022. Understanding IoT Security from aMarket-Scale Perspective. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications Security.
1615–1629.

[26] Mika Juuti, Sebastian Szyller, Samuel Marchal, and N Asokan. 2019. PRADA:
protecting against DNNmodel stealing attacks. In 2019 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 512–527.

[27] Manish Kesarwani, Bhaskar Mukhoty, Vijay Arya, and Sameep Mehta. 2018.
Model extraction warning in mlaas paradigm. In Proceedings of the 34th Annual
Computer Security Applications Conference. 371–380.

[28] Juhyun Lee, Nikolay Chirkov, Ekaterina Ignasheva, Yury Pisarchyk, Mogan Shieh,
Fabio Riccardi, Raman Sarokin, Andrei Kulik, and Matthias Grundmann. 2019.
On-device neural net inference with mobile gpus. arXiv preprint arXiv:1907.01989
(2019).

[29] TensorFlow Lite. [n. d.]. ML for Mobile and Edge Devices. https://
www.tensorflow.org/lite.

[30] Bin Liu, Suman Nath, Ramesh Govindan, and Jie Liu. 2014. DECAF: Detect-
ing and Characterizing Ad Fraud in Mobile Apps. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Implementation (Seat-
tle, WA) (NSDI’14). USENIX Association, Berkeley, CA, USA, 57–70. http:
//dl.acm.org/citation.cfm?id=2616448.2616455

[31] Ruifang Liu, Shan Feng, Ruisheng Shi, and Wenbin Guo. 2014. Weighted graph
clustering for community detection of large social networks. Procedia Computer
Science 31 (2014), 85–94.

[32] Ziwei Liu, Ping Luo, XiaogangWang, and Xiaoou Tang. 2015. Deep Learning Face
Attributes in the Wild. In Proceedings of International Conference on Computer
Vision (ICCV).

[33] Mace. [n. d.]. Convert a model to c++ code. https://mace.readthedocs.io/en/
latest/micro-controllers/basic_usage.html#convert-a-model-to-c-code.

[34] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An input
generation system for android apps. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. ACM, 224–234.

[35] Abner Mendoza and Guofei Gu. 2018. Mobile Application Web API Reconnais-
sance: Web-to-Mobile Inconsistencies and Vulnerabilities. In Proceedings of the
39th IEEE Symposium on Security and Privacy (SP’18).

[36] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[37] Payman Mohassel and Yupeng Zhang. 2017. Secureml: A system for scalable
privacy-preserving machine learning. In 2017 IEEE symposium on security and
privacy (SP). IEEE, 19–38.

[38] ObfDetector. [n. d.]. https://github.com/CirQ/ObfDetector.
[39] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. 2019. Knockoff nets:

Stealing functionality of black-box models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. 4954–4963.

[40] Soham Pal, Yash Gupta, Aditya Shukla, Aditya Kanade, Shirish Shevade, and
Vinod Ganapathy. 2019. A framework for the extraction of deep neural networks
by leveraging public data. arXiv preprint arXiv:1905.09165 (2019).

[41] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay
Celik, and Ananthram Swami. 2017. Practical black-box attacks against machine
learning. In Proceedings of the 2017 ACM on Asia conference on computer and
communications security. 506–519.

[42] Vaibhav Rastogi, Yan Chen, andWilliam Enck. 2013. AppsPlayground: Automatic
Security Analysis of Smartphone Applications. In Proceedings of the Third ACM
Conference on Data and Application Security and Privacy (San Antonio, Texas,
USA) (CODASPY ’13). ACM, New York, NY, USA, 209–220. https://doi.org/
10.1145/2435349.2435379

[43] Lenin Ravindranath, Suman Nath, Jitendra Padhye, and Hari Balakrishnan. 2014.
Automatic and Scalable Fault Detection for Mobile Applications. In Proceedings
of the 12th Annual International Conference on Mobile Systems, Applications, and
Services (Bretton Woods, New Hampshire, USA) (MobiSys ’14). ACM, New York,
NY, USA, 190–203. https://doi.org/10.1145/2594368.2594377

[44] Soot. [n. d.]. A Java optimization framework. https://github.com/Sable/soot.
[45] David Sounthiraraj, Justin Sahs, Garrett Greenwood, Zhiqiang Lin, and Latifur

Khan. 2014. SMV-Hunter: Large Scale, Automated Detection of SSL/TLS Man-
in-the-Middle Vulnerabilities in Android Apps. In Proceedings of the 21st Annual
Network and Distributed System Security Symposium (NDSS’14). San Diego, CA.

[46] Anselm Strauss and Juliet Corbin. 1990. Basics of qualitative research. Sage
publications.

[47] Zhichuang Sun, Ruimin Sun, Changming Liu, Amrita Roy Chowdhury, Long Lu,
and Somesh Jha. 2020. Shadownet: A secure and efficient on-device model infer-
ence system for convolutional neural networks. arXiv preprint arXiv:2011.05905
(2020).

https://developer.android.com/tools/help/monkey.html
https://developer.android.com/tools/help/monkey.html
https://ibotpeaches.github.io/Apktool/
https://keras.io/api/layers/recurrent_layers/bidirectional/
https://keras.io/api/layers/recurrent_layers/bidirectional/
https://doi.org/10.1145/2785956.2790003
https://doi.org/10.1145/2785956.2790003
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/design.html#wp16696
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/design.html#wp16696
https://frida.re/
https://frida.re/
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
http://dl.acm.org/citation.cfm?id=2616448.2616455
http://dl.acm.org/citation.cfm?id=2616448.2616455
https://mace.readthedocs.io/en/latest/micro-controllers/basic_usage.html#convert-a-model-to-c-code
https://mace.readthedocs.io/en/latest/micro-controllers/basic_usage.html#convert-a-model-to-c-code
https://github.com/CirQ/ObfDetector
https://doi.org/10.1145/2435349.2435379
https://doi.org/10.1145/2435349.2435379
https://doi.org/10.1145/2594368.2594377
https://github.com/Sable/soot

DeMistify: Identifying On-device Machine Learning Models Stealing and Reuse Vulnerabilities in Mobile Apps ICSE ’24, April 14–20, 2024, Lisbon, Portugal

[48] Zhichuang Sun, Ruimin Sun, Long Lu, and Alan Mislove. 2021. Mind your weight
(s): A large-scale study on insufficient machine learning model protection in
mobile apps. In 30th {USENIX} Security Symposium ({USENIX} Security 21).

[49] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
2016. Stealing machine learning models via prediction {APIs}. In 25th USENIX
security symposium (USENIX Security 16). 601–618.

[50] Nicolas Viennot, Edward Garcia, and Jason Nieh. 2014. A measurement study of
google play. In ACM SIGMETRICS / International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS ’14, Austin, TX, USA - June 16 - 20,
2014. 221–233. https://doi.org/10.1145/2591971.2592003

[51] Binghui Wang and Neil Zhenqiang Gong. 2018. Stealing hyperparameters in
machine learning. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE,
36–52.

[52] Fengguo Wei, Sankardas Roy, Xinming Ou, et al. 2014. Amandroid: A precise
and general inter-component data flow analysis framework for security vetting
of Android apps. In Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 1329–1341.

[53] Lingxiao Wei, Bo Luo, Yu Li, Yannan Liu, and Qiang Xu. 2018. I know what you
see: Power side-channel attack on convolutional neural network accelerators.
In Proceedings of the 34th Annual Computer Security Applications Conference.
393–406.

[54] Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu Lin, Yunxin Liu, and
Xuanzhe Liu. 2019. A first look at deep learning apps on smartphones. In The
World Wide Web Conference. 2125–2136.

[55] Mengjia Yan, Christopher W Fletcher, and Josep Torrellas. 2020. Cache telepa-
thy: Leveraging shared resource attacks to learn {DNN} architectures. In 29th
{USENIX} Security Symposium ({USENIX} Security 20). 2003–2020.

[56] Honggang Yu, Kaichen Yang, Teng Zhang, Yun-Yun Tsai, Tsung-Yi Ho, and Yier
Jin. 2020. CloudLeak: Large-Scale Deep Learning Models Stealing Through
Adversarial Examples.. In NDSS.

[57] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph Stoecklin, Heqing
Huang, and Ian Molloy. 2018. Protecting intellectual property of deep neural
networks with watermarking. In Proceedings of the 2018 on Asia Conference on
Computer and Communications Security. 159–172.

[58] Tong Zhou, Yukui Luo, Shaolei Ren, and Xiaolin Xu. 2023. NNSplitter: An Active
Defense Solution to DNN Model via Automated Weight Obfuscation. arXiv
preprint arXiv:2305.00097 (2023).

[59] Chaoshun Zuo and Zhiqiang Lin. 2017. SmartGen: Exposing Server URLs of
Mobile Apps With Selective Symbolic Execution. In Proceedings of the 26th World
Wide Web Conference (WWW’17). Perth, Australia.

[60] Chaoshun Zuo, Zhiqiang Lin, and Yinqian Zhang. 2019. Why Does Your Data
Leak? Uncovering the Data Leakage in Cloud From Mobile Apps. In Proceedings
of the 2019 IEEE Symposium on Security and Privacy. San Francisco, CA.

[61] Chaoshun Zuo, Qingchuan Zhao, and Zhiqiang Lin. 2017. AuthScope: Towards
Automatic Discovery of Vulnerable Authorizations in Online Services. In Pro-
ceedings of the 24th ACM Conference on Computer and Communications Security
(CCS’17). Dallas, TX.

https://doi.org/10.1145/2591971.2592003

	Abstract
	1 Introduction
	2 Background
	2.1 On-device ML Practice in Mobile Apps

	3 Overview
	3.1 A Running Example
	3.2 Challenges and Insights
	3.3 Threat Model
	3.4 Scope and Assumptions

	4 Methodology
	4.1 Model Locating
	4.2 Model Execution Slicing
	4.3 Model Reusing

	5 Evaluation
	5.1 Implementation and Experiment Setup
	5.2 RQ1: Scalability of DeMistify
	5.3 RQ2: Effectiveness Evaluation of DeMistify

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

