
AuthScope: Towards Automatic Discovery of Vulnerable
Authorizations in Online Services

Chaoshun Zuo
he University of Texas at Dallas

800 W Campbell Rd
Richardson, Texas 75080

chaoshun.zuo@utdallas.edu

Qingchuan Zhao
he University of Texas at Dallas

800 W Campbell Rd
Richardson, Texas 75080

qingchuan.zhao@utdallas.edu

Zhiqiang Lin
he University of Texas at Dallas

800 W Campbell Rd
Richardson, Texas 75080
zhiqiang.lin@utdallas.edu

ABSTRACT
When accessing online private resources (e.g., user proiles, photos,
shopping carts) from a client (e.g., a desktop web-browser or a
mobile app), the service providers must implement proper access
control, which typically involves both authentication and autho-
rization. However, not all of the service providers follow the best
practice, resulting in various access control vulnerabilities. To un-
derstand such a threat in a large scale, and identify the vulnerable
access control implementations in online services, this paper in-
troduces AuthScope, a tool that is able to automatically execute a
mobile app and pinpoint the vulnerable access control implemen-
tations, particularly the vulnerable authorizations, in the corre-
sponding online service. he key idea is to use diferential traic
analysis to recognize the protocol ields and then automatically
substitute the ields and observe the server response. One of the
key challenges for a large scale study lies in how to obtain the post-
authentication request-and-responsemessages for a given app. We
have thus developed a targeted dynamic activity explorer to per-
form an in-context analysis and drive the app execution to au-
tomatically log in the service. We have tested AuthScope with
4, 838 popular mobile apps from Google Play, and identiied 597

0-day vulnerable authorizations that map to 306 apps.

CCS CONCEPTS
•Security and privacy →Access control; Authorization; Web
application security;

KEYWORDS
Access control; authorization; vulnerability discovery

1 INTRODUCTION
For any multi-user computing systems (e.g., online shopping and
social networking), there is a need to regulate who can view or
use a resource. A particular security mechanism to achieve this
is to use access control, in which a user needs to be irst authenti-
cated (i.e., telling the system who the user is) and then the access
is granted if the authenticated user has the permission to do so.
he use of access control can be dated back to Multics Operating
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permited. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior speciic
permission and/or a fee. Request permissions from permissions@acm.org.
CCS’17, Oct. 30–Nov. 3, 2017, Dallas, TX, USA.
© 2017 ACM. ISBN 978-1-4503-4946-8/17/10…$15.00
DOI: http://dx.doi.org/10.1145/3133956.3134089

Systems [32], where a user irst logs in the system to acquire a
user ID (UID) via a password-based authentication, and then the
kernel checks the UIDwhen the user requests access to a protected
resource based on the corresponding permissions. Nearly all of
the later multi-user operating systems (e.g., UNIX/Linux) have fol-
lowed such an approach when implementing their access control
mechanisms.

When moving to the online services, designing and implement-
ing a secure access control mechanism becomes a challenging task
for several reasons. First, an online service can have up to hun-
dreds of millions (even billions) of users, and handling such a large
scale of users oten needs to use eicient database technologies.
Second, managing the user credential correctly for authentication
is another challenge (e.g., many online service today still mistak-
enly store plaintext password [3, 12]). hird, the client side (e.g., a
browser, a mobile app) can be completely controlled by an atacker
and cannot be trusted at all. hat is, a request message generated
by a client can be untrusted, and the eicient security check is
needed at the server side [47].

While the use of single-sign-on (e.g., with Facebook Login) [38]
has made the authentication management much easier for online
services, it does not solve the authorization problem automatically
in that the online service provider (e.g., shopping sites such as
Amazon) still has to regulate that the authenticated user only views
and updates her own resources (e.g., her user proile or shopping
cart). Over the past many years, an eicient approach of using
security tokens to handle authorization was developed [20], and
popularized especially in web applications. In particular, in tradi-
tional desktop web applications, a browser cookie or a session ID
(these are oten called security tokens) is used for the authoriza-
tion.

Consequently, the security of the authorization depends on how
strong the token is (and also whether the server enforces it). Any
disclosure, capture, prediction, brute force, or ixation of the se-
curity tokens will lead to severe atacks such as account hijack-
ing, where an atacker is able to fully impersonate a victim to
get all of her personal data. Unfortunately, not all of the online
service providers follow the best practice when using the security
tokens for the authorization. For instance, we have observed weak
security tokens (e.g., just a very small integer) passing through
mobile apps. Meanwhile, we have also observed that even though
a service provider may have used strong security tokens (e.g., a
256-bit cryptographic hash), the server actually does not enforce
whether this token belongs to a particular user (i.e., the token) or
it is just a token. Given the fact that so many mobile apps used
in our daily lives, it is imperative to systematically identify these

vulnerable access control servers, otherwise users’ personal data
can be thus leaked.

To this end, this paper introduces AuthScope, a tool to auto-
matically identify the vulnerable access control servers, especially
the vulnerable authorizations, when given just mobile apps. Since
we do not have any source code of the sever side implementations,
we can only perform a blackbox analysis of the remote server by
generating and analyzing various network request and response
messages between the client and the server. To pinpoint the vul-
nerable access control implementations, our key insight is to use
diferential traic analysis, a widely used network protocol anal-
ysis technique (e.g., [13, 16, 17, 40, 47]), to recognize the network
protocol ields and then automatically substitute the ields of in-
terest and observe the server response to identify the vulnerable
services. One of the key challenges for a large scale study lies in
how to obtain the post-authentication request-and-response mes-
sage pairs for a given app. We have thus developed an adaptive
dynamic app activity explorer to perform an in-context analysis
and drive the app execution to automatically log in the service.

We have implementedAuthScope and tested it with 4, 838 very
popular mobile apps from Google Play. Note that these apps all
contain Facebook login and they belong to the top 10% of the mo-
bile apps in terms of the accumulated downloads in Google Play.
To our surprise, AuthScope has identiied 597 0-day vulnerable
access control implementations in the server side of 306 mobile
apps (with an upper bound of total install of 61 million). he
root cause of these vulnerabilities comes from the mistaken use of
either predictable IDs, or user’s email address, or user’s Facebook
ID for the authorization without (or enforcing) any security tokens.
Consequently, these online services can all be completely broken
by an adversary, and privacy sensitive or even secret data for up to
61 million mobile users can be leaked due to these vulnerabilities.

In short, we make the following contributions in this paper.
- Novel System. We present AuthScope, a novel tool to

automatically identify the vulnerable access control on the
server side. It does not require any code access of server’s
implementation, other than just the traic between an au-
thenticated user and the server.

- Eicient Techniques. We apply diferential traic anal-
ysis to automatically reverse engineer protocol ields of
interest, such as security tokens, and also we develop an
adaptive app activity exploration scheme to execute a mo-
bile app in a targeted way and apply it to trigger post-
authentication request messages.

- PracticalResults. We have testedAuthScopewith 4, 838
popular Android apps. Our tool has identiied 597 0-day
vulnerable access control implementations among the re-
mote servers of 306mobile apps. We have made responsi-
ble disclosure to all of the vulnerable service providers.

2 BACKGROUND
In this section, we present necessary background in order to under-
stand the common mistakes and root causes of vulnerable access
control implementations in online services. We begin with the
basic concepts of authentication and authorization in §2.1, and
then examine why the authorization in UNIX/Linux is secure in
§2.2. Finally, we discuss how a typical secure authorization in an

1

2

3

4

User Credential

Access Token

Access Token, Resource

Response

Figure 1: A Simpliied Authentication and Authoriza-
tion Protocol in Online Services.

online service is implemented and its practical security issues in
§2.3.

2.1 Authentication and Authorization
When providing private resources to multiple users, it oten re-
quires two security services: authentication and authorization.

- Authentication. he process of verifying a user’s iden-
tity is called authentication. In a multi-user system, it is
crucial to accurately identify who makes the request. A
widely used approach to perform authentication is to use
a password system in which a user’s identity is veriied by
checking with a hashed password typed during the login.
Also, authentication typically only needs to be performed
once; otherwise it will be annoying to the user.

- Authorization. he process of granting the access of spe-
ciic resources based on user’s privileges or permissions is
called authorization. Not that authentication provides the
proof of identity, but it does not describe the resources
that are allowed to be accessed by the authenticated user.
For instance, a user is authenticated before accessing a
database, but this does not tell the database system which
data the user is entitled to access. For this, it requires the
authorization service.

2.2 Authorization Security in UNIX/Linux
For a multi-user operating system such as UNIX/Linux, right ater
an authenticated user logs in, the system will automatically assign
a UID (which is just an integer) based on the proile in the system
(e.g., /etc/password) and create a shell process to serve the user’s
request. his shell process will interact with the system on behalf
of the user with the assigned UID that is maintained by the process
descriptor in the kernel. To change the UID of a process or a user,
it must invoke system calls.

More speciically, to ensure the security, any access to a re-
source needs to invoke system calls, in which access control is
enforced based on the UID and permissions. An adversary cannot
forge his or her UID to someone else’s even though the UID is
known, because the kernel remembers the UID and tracks it at
the corresponding process descriptor. For an adversary to really
change the UID, he or she must exploit sotware vulnerabilities in
the system such as bufer overlows in a daemon process. When
the user logs out, the shell process also terminates and the user has
to be authenticated again in order to use the system.

2.3 Secure Authorization in Online Service
As stated early, there are many challenges (e.g., a large volume of
users, untrusted client, etc.) when implementing a secure autho-
rization in online services. More importantly, online services oten
require high scalability and availability. Unlike the UNIX/Linux
authentication and authorization, which is stateful and kernel re-
members who has logged in and out, the majority of today’s online
service uses HTTP/HTTPS protocol, which is stateless. A state-
less protocol can be forced to behave as if it were stateful if the
server and the client can send the state along with every request
and response message. A typical way of accomplishing this in
HTTP/HTTPS is to use security tokens such as cookies or session
IDs. As illustrated in Figure 1, at a high level, the authentication
and authorization protocols in on-line services can be abstracted
using the following four steps:

- Step ❶: he client sends a request to the server with user
credentials such as a password. he server authenticates
the identity of the user via the password, social single
sign on (e.g., Facebook Connect), or other means. To pre-
vent any leakage of the credentials, transport layer secu-
rity (TLS) is oten used to ensure the communication se-
curity.

- Step ❷: he server creates a randomly generated token
and binds it with the authenticated user, and the server
then transmits the token back to the client.

- Step ❸: he client includes the server provided token on
subsequent requests to the server as a proof of identity, the
server then grants or rejects the user access to protected
resources based on her permissions.

- Step ❹: he server responds to the user request with the
appropriate information.

Sometimes, there are even more simpliied implementation of
the protocol and the client does not need to complete the irst three
steps to access a resource stored in the server, if the client knows
(e.g., distributed via an email irst) the resource ID (RID in short)
and this RID is suiciently random. For instance, when using
Overleaf, an online Collaborative Writing and Publishing service,
to share a paper repository, the user could just sent the URLs (e.g.,
https://www.overleaf.com/9357323vdzpzwzmwdmx) generated by
Overleaf. Only the recipient who has the URL can access the pa-
per repository because the RID (e.g., 9357323vdzpzwzmwdmx,
which is essentially a token) is suiciently random. Also, in this
case, the server does not have to remember who holds the RID:
anyone who has it can access the repository. hat is, the binding
of the token to a user is performed separately (e.g., managed by
the user not by the server).

Practical Issues. According to the above discussion, we can no-
tice that proper generation and use of security tokens (or RIDs) is
paramount to ensure the authorization security. In theory, because
the token (or RID) is generated at the time of login (or creation)
and is random and unguessable, its presence suiciently serves as
proof that the request really comes from the authenticated user to
whom the token (or RID) was assigned. In reality, however, we
believe not all developers would have followed such best practice,
and there will be many poorly engineered servers (as those poorly

engineered mobile apps sufered from various vulnerabilities iden-
tiied in the past few years such as component hijacking [24], in-
formation leakage [9]), and privilege escalation [44]).

More speciically, there will be a variety of issues when imple-
menting the authorization security on the server side. For instance,
is the security token (or RID) suiciently random? Has the server
really enforced the check of the security tokens? Even though the
server checked the token, has it really made sure it is the token
binded to a particular user or it is just a token (a token vs. the
token)? Does the user have the permissions to access the protected
resources? With these questions inmind, wewould like to perform
a large scale, systematic study of how online service providers
implement their access control for mobile users, and identify those
vulnerable ones if there is any.

3 OVERVIEW
hegoal of this work is to understand how online service providers
implement their access control of user resources, and identify those
servers that are vulnerable to account hijacking and private infor-
mation leakage, by just analyzing the traic between the mobile
apps and the server. While there are a variety of ways to do so,
we seek to design an approach that is scalable, automated, and
systematic. In this section, we irst use a running example (§3.1) to
discuss various challenges (§3.2) we have to solve, and then give
an overview of our system (§3.3).

3.1 A Running Example
To illustrate the problem clearly, we use a running example from a
popular social app namedW 1 that manages users’ pets (e.g., dogs)
and track their activities. W app is very interesting in that it ac-
tually contains a vulnerable access control implementation even
though it uses strong security tokens for user authorization.

In particular, as illustrated in Figure 2, right ater a legitimate
user logs in the app, theW client will automatically send a request
to the server to get all the notiication messages (which are pri-
vate resources belonging to this particular user). For each speciic
notiication message, the server will assign an RID (e.g., 433222
and 433227) and send the response message containing the RID to
the client, as shown in Figure 2(a) and Figure 2(b), the request and
response message pairs for user Alice and Bob we registered with
the service, respectively.

We can observe that the server ofW does use a user speciic ran-
dom string as the security token (i.e., as shown in the in_app_token
ield). he server also assigns two integers, namely 21690 as Al-
ice’s user ID (UID in short) and 21691 as Bob’s UID. Unfortunately,
if we substitute the UID in the post-authentication request mes-
sage of Alice with the value from Bob’s, e.g., replacing 21690 with
21691, we can successfully read Bob’s private notiicationmessage
by using Alice’s token as shown in Figure 3.

herefore, as can be noticed, the server ofW has made either of
the two following mistakes:

- Noenforcement of the security tokenwhether or not
belonging to a particular user. If the server has checked
UID 21690with Alice’s token and 21691with Bob’s token,
the substitution atack would not have succeeded.

1Note that we do not report the concrete name of this app, since the vulnerability
identiied in the server ofW has not been patched yet as the time of this writing.

https://www.overleaf.com/9357323vdzpzwzmwdmx

GET /api/v1//users/21691/notifications?in_app_token=fb153b7d8c0a
0c6ac841d7bfbd9446de627c642858 HTTP/1.1
Host: api.*****.com
Connection: close

HTTP/1.1 200 OK
Cache-Control: max-age=0, private, must-revalidate
Content-Type: application/json
ETag: W/"6ee365b32e7f3e145d5c74778ea243cd"
Server: nginx/1.6.2
X-Request-Id: 4970cafb-9438-4a70-96e0-ca2f789f0d5d
X-Runtime: 0.022889
Content-Length: 192
Connection: Close

[{"id":433227,"sender":null,"dog":null,"notification_type":15,"n
otification_text":"Welcome to *****.","object_id":21691,"is_seen
":true,"is_read":false,"created_at":"2017-01-28T23:56:40.533Z"}]

(a) Alice’s first request and response message after login

(b) Bob’s first request and response message after login

GET /api/v1//users/21690/notifications?in_app_token=e67315b35aa3
8d4ac8cac3cd9c7f88ae7f576d373f HTTP/1.1
Host: api.*****.com
Connection: close

HTTP/1.1 200 OK
Cache-Control: max-age=0, private, must-revalidate
Content-Type: application/json
ETag: W/"5319d96924bb6d0a761b5f13b248919c"
Server: nginx/1.6.2
X-Request-Id: 5775d45e-cc3b-4665-8bc6-c2c7a2c9180d
X-Runtime: 0.027840
Content-Length: 191
Connection: Close

[{"id":433222,"sender":null,"dog":null,"notification_type":15,"n
otification_text":"Welcome to *****.","object_id":21690,"is_seen
":true,"is_read":true,"created_at":"2017-01-28T23:54:59.831Z"}]

Figure 2: Sample Request and Response Messages of
our Running Example. he server name has been
anonymized with *****.

GET /api/v1//users/21691/notifications?in_app_token=e67315b35aa3
8d4ac8cac3cd9c7f88ae7f576d373f HTTP/1.1
Host: api.*****.com
Connection: close

HTTP/1.1 200 OK
Cache-Control: max-age=0, private, must-revalidate
Content-Type: application/json
ETag: W/"6ee365b32e7f3e145d5c74778ea243cd"
Server: nginx/1.6.2
X-Request-Id: 4970cafb-9438-4a70-96e0-ca2f789f0d5d
X-Runtime: 0.022889
Content-Length: 192
Connection: Close

[{"id":433227,"sender":null,"dog":null,"notification_type":15,"n
otification_text":"Welcome to *****.","object_id":21691,"is_seen
":true,"is_read":false,"created_at":"2017-01-28T23:56:40.533Z"}]

Figure 3: Alice Read Bob’s Private Message.

- No randomness of the UID. If the server does not at-
tempt to enforce the consistency check between the UID
and the corresponding user token, it canmake the UID suf-
iciently random and atacker cannot make a predictable
guess, thereby defeating the substitution atack.

he goal of our AuthScope is exactly designed to identify these
vulnerable servers automatically and in a large scale, by perform-
ing the request message ield inference and substitution systemat-
ically.

3.2 Challenges and Key Insights
From the above running example, we can notice that there will
be a number of challenges in order to achieve our goal and these
include:

- How to obtain the post-authenticationmessages. Since
we focus on the identiication of the vulnerable authoriza-
tion implementations (which occur ater the user authen-
tication), we must execute the app to reach the state that
generates the post-authentication request messages. In
other words, we must have a registered legitimate user of
the testing service and obtain a legal post-authentication
message. While we can use manual eforts to register a
legal user in each of the to-be-tested service, this cannot
scale to a large volume of apps. his also contradicts our
goal of fully automation. herefore, we have to design
techniques to drive the app execution to trigger the le-
gitimate post-authentication messages (e.g., the ones illus-
trated in Figure 2).

- How to recognize the protocol ields of interest. With
the traced legitimate request and response messages, we
have to also identify the ields that are of our interest. For
instance, as shown in Figure 2, we have to recognize vari-
ous ields such as in_app_token in which there are ield-
name associated, and those that do not have any ield-
name (e.g., 21690 and 21691 in the URL path though we
suspect it is a UID ield) in the messages. Note that un-
like traditional HTTP request message in which we can
directly recognize the protocol ields by ield names, we
have to systematically recognize all of the protocol ields
including ield-name hidden ones used in URLs such as
those using REST APIs.

- How to identify the vulnerability. Having obtained
the post-authentication messages and recognized the pro-
tocol ields, we still need to systematically substitute the
protocol ields in the request messages to observe how a
server would respond to the substituted request messages.
How to decide whether a server is vulnerable based on the
response message is another challenge.

Fortunately, all of the challenges listed above can be solved or
partially solved with the following key insights.

- Executing the app with single-sign-on. It is tedious to
manually register a user account one by one for each of
the tested mobile app. Interestingly, we notice that many
of themobile apps today support social login such as using
Facebook login. With this, we can automatically log in an
app to exercise the post-authentication messages if we are
able to drive the app to execute the Facebook login. he
limitation for this approach is for those that do not use
social login we will not be able to test them automatically.

- Recognizing protocol ields of interest with diferen-
tial traic analysis. With just one request and response

Field Recognition

and Substitution

Response Message

Labeling

Alice’s Request1

Alice’s Request2

Bob’s Request

Alice’s Request1

Alice’s Request2

Bob’s Request

Alice’s Response1

Alice’s Response2

Bob’s Response

Field-Substituted Alice’s Request Messages (for Bob)

Server Response Messages for the Field-Substituted Request

1

2

3

1

2

3

4

5

6

7

8

Post-Authentication

Message Generation

Smartphone Man-in-the-Middle Proxy Cloud

Figure 4: An Overview of AuthScope.

message pair, it will be challenging to recognize the pro-
tocol ields of our interest. However, if we have two le-
gitimate users and have two such message pairs, we can
easily identify the ields of our interest by aligning the two
corresponding messages and looking for the diferences,
as what we have done in our prior work AutoForge [47].
For instance, if we align the two request messages gener-
ated by Alice and Bob, we can easily recognize the UID
ield and the in_app_token ield as shown in Figure 2.

- Substituting the ields having small Euclidean dis-
tance. We do not have to substitute the cryptographi-
cally generated token ields since it will be so random and
impossible to guess (e.g., the the in_app_token ield in
our running example), and instead we should substitute
the ield whose corresponding difed value has a short dis-
tance (e.g., the UIDieldwith value 21690 and 21691, which
has just one Euclidean distance, if we convent these two
numbers to integers). his also means we have to convert
all the numbers and strings to computable forms such that
the Euclidean distance can be measured between the two
difed values. Note that there might be some other dis-
tances but euclidean distance can serve our purpose in our
problem seting.

- Labeling server response also with diferential traf-
ic analysis. Ater we substituting the ields of our in-
terest (e.g., the UID ield) as shown in Figure 3, we have
to decide whether the substitution indeed proves the ex-
istence of the vulnerable authorization in the server side.
Fortunately, we notice that when substituting the Alice’s
UIDwith Bob’s, if the server responses with Bob’s private
message we observed before, then it is indeed vulnera-
ble. More speciically, as demonstrated in our running
example, the response message in Figure 3 is identical to
the response message in Figure 2(b), which truly conirms
that the server side ofW app is vulnerable. However, the
response may contain some message speciic information
such as the time stamp. Fortunately, diferential traic
analysis can also identify these ields and ilter them out,
as demonstrated in AutoForge [47].

3.3 System Overview
An overview of AuthScope is presented in Figure 4. here are
three key components: (1) Post-Authentication Message Gen-
eration that drives the app execution and triggers the legitimate
user’s post authentication request messages, (2) Protocol Field
Recognition and Substitution that recognizes the protocol ields
of the request messages and mutates the ield of our interest, and
(3) Response Message Labeling that labels the response mes-
sages and decides whether the server is vulnerable to access con-
trol violation atacks. All of these components run in the client
side (without accessing any server code) either in a mobile device,
or in a man-in-the-middle network proxy.

Scope andAssumptions. We focus on analyzing the mobile apps
that use HTTP/HTTPS protocols, although AuthScope can be ex-
tended to analyze non-text protocols. Also, we focus on the apps
that use the Facebook login; otherwise we will not be able to auto-
matically trigger the post-authentication messages. Regarding the
type of the access control vulnerabilities, we focus on the vulner-
able authorization implementations that are caused by (i) no secu-
rity token, (ii) no randomness of when referring resources at server
sidewhen no token, (iii) no access control enforcementwhen using
token. Other vulnerabilities of the server access control such as (1)
a user security token is never changed in the life span of the user,
(2) how random a token is, (3) the token is transmited in plaintext,
or (4) no/weak authentication, are out-of-scope of this work.

With respect to the HTTPS traic, since we control the smart-
phone and also the man-in-the-middle proxy, we install a root
certiicate in the phone signed by ourselves, and then we can ob-
serve the traic in the proxy in plaintext. Such a method has
been widely used in many systems to observe the HTTPS traic
between mobile apps and servers (e.g., [5, 46, 47]).

4 DETAILED DESIGN
In this section, we present the detailed design of the three key
components of AuthScope. Based on their execution order, we
irst describe how to trigger the post-authentication message of
a mobile app in §4.1, then explain how to perform the protocol
reverse engineering to recognize and substitute the protocol ields
of interest in §4.2, and inally present how we label the response

message and detect the vulnerable access control of the remote
services in §4.3.

4.1 Post-Authentication Message Generation
Unlike many other mobile app dynamic analyses which only need
to randomly trigger some app activities, we need an analysis that
can allow the app to enter an important state (i.e., the post au-
thentication state). At a high level, this would mean that we need
to irst register a legal user in the remote service when given a
mobile app, and then execute the app with the registered user and
meanwhile successfully log in the server. However, the user regis-
tration (i.e., sign up) interface of a mobile app can actually be quite
sophisticated. We cannot run a dynamic random testing tool such
as Monkey [7] to perform the user sign up because of the various
constraints in the interface such as some input may need to follow
certain format (e.g., username, passwords, emails, zip code, phone
numbers), some input (e.g., passwords, PINs, and emails) may need
to enter twice for consistency checks, and some input must satisfy
some constraints (e.g., age needs to be greater than 18).

It might appear we need to use symbolic execution to collect the
constraints and solve them to inish the server sign up process from
a mobile app. However, many of the constraints checking code
may just exist in the server side, and symbolic execution of mobile
app may not be able to collect these constraints. Meanwhile, many
of the registration processes may also need users to click certain
links sent via the emails. In addition, theremight be CAPTCHAs in
the user sign up interface. hese all make user registration process
non-trivial for a large scale study.

Fortunately, we also notice that many mobile apps today use
social login, in which a user just needs to log in the service with her
social account and the server will automatically pull the data from
the corresponding authentication service providers (e.g., Facebook).
With this, we can avoid running the sign up process and instead di-
rectly run the app to trigger the social login interface. Also, it will
be very rare to have sophisticated constraints in order to trigger
the Facebook login, and most of the time the social login interface
can be triggered with the irst few activities if the app does contain
such an interface. We also do not need symbolic execution for our
later stage post-authentication analysis, as long as we can have
one sample request and response message pair (this is based on
the observation that if the server is vulnerable to the authorization,
it is very likely that this vulnerability will exist in many of its
request messages). Meanwhile, most mobile apps are designed to
pull data from servers. An in-depth activity explore shall be able
to trigger at least one such message pair. herefore, we decide
to design a targeted app activity explorer (§4.1.1), which will solve
both automatic service login via social-based single sign on (§4.1.2),
but also the generation of post-authentication messages for our
later stage analysis.

4.1.1 Targeted App Activity Explorer

Again, while we could have just run random dynamic testing tool
such as Monkey to explore the app activities, such an approach
would be very ineicient (cannot meet our large scale study goal)
and cannot provide any guarantees of triggering the code we in-
tended. Inspired by prior works such as AppsPlayground [34],
SVM-Hunter [35], and Gui Ripping [27, 31] in which UI elements

are recognized and used to drive the app execution, we also design
an approach that parses the UI elements in a given activity and
then leverages a depth-irst-search (DFS) algorithm to explore the
next-layer app activities and trigger the activities of our interest
(such as Facebook Login).

In Android, an activity represents a single screen (can be a win-
dow or a loating window embedded in another activity) interface
that interacts with users. Every activity deined for the app must
be declared in the manifest ile. Within each activity, every UI
element such as a Buton, an ImageButon, a CheckBox, an EditBox,
etc., represents a view. All the views are deined in the layout ile
of an activity or deined by programmers in code. Each view can be
binded to a speciic action. When a user interacts with an activity
(e.g., click a Buton), the action binded to the corresponding speciic
view will be invoked, which might lead to jump to another activity.

Since we would like to explore as many activities (as well as the
views inside an activity) as we can, we have to uniquely identify each
activity and each view such that we do not have to explore the activ-
ity and the view again (e.g., click a Buton again) if we have explored
it before (otherwise our DFS activity exploration may encounter
dead loops). To uniquely identify an activity is trivial, we use the
name of each activity as the signature, due to the uniqueness of the
activity name. However, there is no such a single obvious atribute
to uniquely identify a view. Note that intuitively, the memory ad-
dress of each view object should be unique, but thememory address
of a view can be changed when an activity is refreshed.

View Identiication. In Android, all activities for a task are main-
tained using a stack, and they are arranged in the order according
to the time when each activity is opened. For example, the current
activity is at the top of the stack; when jumping to another activity,
the state of current activity is saved in the top of the stack and then
opens the new activity. When the new activity inishes (e.g., the
user clicks a back Buton), the older activity stored in the top of the
stack will be popped up. Such an activity exploration mechanism
canmake each single view appear on the screenmultiple times. But
for our analysis, exploring each view only once is enough.

To avoid exploration redundancy and ensure eiciency, we need
to uniquely identify each view. In AuthScope, we use a vectorwith
six atributes <N ,C,T , I ,A,H> to uniquely identify a view, more
speciically:

(1) N : the N ame of the activity, to which the view belongs.
(2) C: the Class name of the view (e.g., the class name of But-

ton android.widget.Buton).
(3) T : the T ext or image displayed on the view. Typically, the

text or image of a view should be diferent with other views
in the same activity.

(4) I : the ID of the view. Developers may assign each view
with an ID in the layout ile. However this value could be
NULL because this is not a mandatory rule for developers
and not every view has an ID.

(5) A: the class name of the Action binded to the view.
(6) H : the H ierarchy of the view in the layout ile. Typically,

each activity has its own layout ile, which contains the
type and location of each view. However, not every activity
has a layout ile, because Android allows developers to
hard-code the arrangement of the layout in the source
code.

With <N ,C,T , I ,A,H>, AuthScope can uniquely distinguish
each view from others. We have to note that we are not the irst
to encounter this view identiication problem. In fact, AppsPlay-
ground [34] has used <T ,H ,L> where L represents the location
of the view in an activity and T and H are the same as in Auth-
Scope. While <T ,H ,L> may be suicient in their application sce-
nario [34], we ind we do need more information in our use case.
For instance, we observe H can be missing because not all devel-
opers use layout iles for view arrangement. Meanwhile, L can
be changed in some views. For instance, when scrolling up and
down, the location of the view in an activity can be changed. In
contrast, AuthScope has a much stricter policy in determining the
uniqueness of a view, and our N ,C,A will never be missing and H

can be used to solve most of the scrolling problems.

View Exploration. When an activity is created, AuthScope will
automatically create the<N ,C,T , I ,A,H> vector for each viewwithin
the activity. Having uniquely identiied each view, we then explore
the current activity using a prioritized DFS algorithm. Since we aim
to exercise the social login interface before authentication and any
explorable interface ater authentication (to get sample request and
response message pair), we classify all views in the same activity
into three categories and then prioritize the DFS traversal in the
following order:

- view contains social login (e.g., Facebook login).
- view has a binding action.
- view has no binding action.

To summarize, similar to AppsPlayground [34], when an activity
is created, AuthScope recognizes each unique UI element (i.e.,
view) of the activity, traverses each view using a prioritized DFS
algorithm. If the view has been visited before, we will not traverse
it again. We inish the exploration of the current activity, when we
traverse all of its views.

4.1.2 Automatic Social-based Service Login

Having the capability of exploring the app activities, next we need
to drive the app to execute social login interface. We use a similar
approach of how a real user recognizes whether a view contains
social login. In particular, take Facebook login as an example, real
users recognize there is a Facebook login by reading the text over
a Buton, such as “Sign in with Facebook” or “Facebook Login”.
By scanning the text of a view in the layout ile whether or not con-
taining Facebook sub-string, we prioritize the activity exploration
to such a view. If there is no such string, there must be a binding
action to invoke the Facebook login, and our DFS traversal will
also eventually invoke it. Normally, this login interface exists in
the irst few activities and it is very unlikely that there will be any
constraints involved to invoke the Facebook login.

Ater AuthScope successfully clicks the Facebook login buton,
the app will follow the execution logic in the library from the Face-
book, which is a very standard logic. We just pre-register two
accounts Alice and Bob with the Facebook service (the reason of
why we need two users is presented in §4.2), and then automati-
cally log in the corresponding servers using the Facebook account
when the login interface pops up. he app execution ater this
stage will trigger those post-authentication request and response
messages when performing our DFS traversal of the activities and

views. Our DFS traversal algorithm is deterministic. herefore, the
exercised request and response message sequences are consistent
among diferent users.

4.2 Message Field Recognition and Substitution
With the exercised request and response messages collected by
our man-in-the-middle proxy, next we need to infer the message
ields and substitute the ields of interest to see whether the server
has vulnerable authorization implementations. To perform this
automatically, we need to design a principled approach to (1) parse
the message ields (§4.2.1), (2) identify the ields of interest (§4.2.2),
and (3) substitute the ields that are enumerable (§4.2.3).

4.2.1 Parsing Message Fields

Since AuthScope focuses onHTTP/HTTPS protocol, we just need
to parse the post-authentication request and responsemessages for
this well-formed text protocol. According to the HTTP protocol
speciication [2], each request message consists of (1) a request line
(e.g., GET /index.html HTTP/1.1), (2) request-header ields (e.g.,
Host: www.sigsac.org), (3) an empty line, and (4) optional message
body. Similarly, each response message consists of (1) a status line
(e.g., HTTP/1.1 200 OK), (2) response-header ields (e.g., Accept-
Language: en), (3) an empty line, and (4) an optional message body.
Both Figure 2 and Figure 3 contains more concrete examples of
request and response messages.

Parsing Request Messages. Each request message needs to be
responded by a server API, and this API can be indexed by the
value of Host and the resources requested in the request line. To
parse each request line, we need to irst parse the path segment by
scan the reserved path symbol “/” and then retrieve each directory
name. If there is any URL encoding in the request line (as in our
running example), we also need to parse each request parameter
name (e.g., in_app_token) and its value. Note that in URL en-
coding, the parameter name and its value is connected by symbol
“=”, each pair is concatenated by “&”. It is quite straight forward
to index the parameter name and its value, and we store them in a
pair <name,value>.

Regarding the message body, it can be just empty, data encoded
with URLs, JSON (e.g., as shown in our running example), XML,
html page, or just some text. We only parse URL, JSON or XML
encodings of the message body, and treat the rest just as text. To
parse URL encoding, we parse it in the same way as in request
line. For JSON and XML, they both have a hierarchy tree structure,
which means that each value can be tracked by the path from the
root of the tree. Also, note that if the value of a parameter is a
JSON array, we will not consider the order of the element in the
array. hat is the array [a,b] should be treated as the same array
as array [b,a] when we build the parameter and value pair (i.e.,
<name,value>) when parsing the message ield.

Parsing Response Messages. he response message is sent by
the server ater it processes the request (essentially the return value
of the server API). We will associate the response messages with
the corresponding request messages. Similar to how we parse the

request messages, we use the same way to parse the response mes-
sages and build <name,value> pairs if there is any. he response
message will be primarily used in §4.3.

Indexing the request and response messages. Ater parsing
each request and corresponding response message pair, we need
to index it such that we can easily locate it during our next stage
analysis (§4.2.2). Essentially, this can be considered as an instance
of a server API execution, and we have collected the server inter-
face (i.e., the URLs that include the Host address and data reference
path), the parameters, and return values. herefore, we index it
based on the URLs, the <name,value> pair we parsed from the
request message (which can be considered as parameters) and the
response message.

4.2.2 Identifying Fields of Interest

Clearly, not all ields are of our interest. For instance, in our run-
ning example shown in Figure 2(a), we are just interested in ield
with value 21690 and the in_app_token ield in Alice’s request
message. Since there are many non-related ields in a request mes-
sage, we must automatically select the ields of our interest. he
key solution here is to use message alignment and value diing, a
common approach used in protocol reverse engineering, such as
Protocol Informatics [13]. hat explains why AuthScope requires
at least two registered users (e.g., Alice and Bob) with the service,
and also one user needs to login and logout twice to exercise two
sets of the same request messages (e.g., Alice’s Request1 and Al-
ice’s Request2 as shown in Figure 4).

Message Alignment and Value Diing. In general, a request
message could contain user-speciic ields (e.g,. in_app_token),
and non user-speciic ields (e.g., the request-header ields, and also
timestamp ield if there is any in the request message). By using
message alignment and value diing, we can quickly locate user-
speciic ields, and non user-speciic ields.

- Aligning and Diing Diferent Users’ Same Request.
By aligning and diing with the same request messages
(recall that we have indexed all of the request messages)
of two diferent users (e.g., Alice’s Request1 and Bob’s
request), we can quickly identify the user-speciic ields by
selecting the value dif-ed ields. For instance, by aligning
and diing the two diferent users request messages show-
ing in Figure 2, we can automatically locate ield 21690
and 21691, and the ields in_app_token. he rest ields
have no diferences and are therefore not of our interest.

- Aligning and Diing Same Users’ Same Request at
Diferent Time. However, some message-speciic ields
(e.g., timestamp if there is any) can also be value diferent.
herefore, we will further align and dif the two request
messages of the same user (e.g., Alice’s Request1 and Al-
ice’s Request2) to remove those message-speciic ields.

Selecting the Fields of Interest. he key objective of Auth-
Scope is to discover the vulnerable authorization by performing
what an atacker could do — substituting a guessable ield and ob-
serving whether other user’s information can be leaked. herefore,
we should focus on the ields that are guessable or enumerable (can
be performed by a brute-force atack). In our running example,

Field-Value of Alice vs. Field Value of Bob ED

fb153b7d8c0a0c6ac841d7bfbd9446de627c642858
e67315b35aa38d4ac8cac3cd9c7f88ae7f576d373f +∞

21690
21691 1.00

Table 1: he Euclidean distance of the difed-ields
between Alice’s and Bob’s request messages.

clearly we should select and substitute ield 21690 with value 21691
(as what we did in Figure 3), instead of the in_app_token ield
because a token is in general unguessable and substituting a token
does not reveal the vulnerabilities (if a security token is changed,
the response should be changed as well). As such, we need an
algorithm to select the enumerable ields. Fortunately, we notice
that by using the Euclidean distance and predictable values, we can
automatically locate such ields.

- Euclidean Distance. An Euclidean distance (ED) is a
metric that measures the ordinary straight-line distance
between two points in Euclidean space. he smaller an
ED of a ield, the more likely to be guessed by atackers.
For instance, as shown in Table 1, the ED of 21690 and
21691 is just one, whereas the ED between the two tokens
is 14a225ca31667f1ff7713f22114be2fe324f6f119 (we thus
consider it a giant astronomical number +∞). Certainly,
when having a sample message with 21690, an atacker
can quickly probe other user’s information in a service by
changing to other closer numbers, whereas for token it is
hard for atackers to guess other’s.

hen the next question becomes howAuthScope com-
putes ED and decides whether a distance is+∞ (unguess-
able). To achieve this, AuthScope converts all difed value
(including strings and byte sequences) to numbers using
their minimal base. For instance, we will convert 21690
to a decimal value (using base-10), and the token using
base-36 (alphabetic + number). If a string contains other
printable ASCII symbols (recall HTTP is text-based proto-
col), we will use the worst case base-95 to convert it (there
are maximum 95 printable ASCII characters).

To decide whether an ED is +∞, we set a threshold
based on the number of downloads of the app. he in-
tuition is if the ED is smaller than the total number of
downloads showing in the app market, we consider the
corresponding ield enumerable because any substitution
of the value with a nearby one will likely lead to the disclo-
sure other user’s information if the server is vulnerable.

- Predictable Value. Using ED can ind most of the guess-
able ields. However, there are a few special cases that the
ED might be +∞, but it is guessable. One example is the
email address. Very likely, the ED of two email addresses
can be +∞, but an atacker can easily guess other’s email
address because of the recent huge data leakage of user ac-
counts in online services, making the email address value
predictable. herefore, we use string matching to handle
such ields. More speciically, if any of the request mes-
sage contains Alice’s email address (using email address

patern matching), this guessable email address ield is of
our interest.

he other example is the Facebook ID (FID). While it
is a giant integer (e.g., 17927643151, which is the ACM’s),
it can be publicly crawled. Other than this ID, when user
using Facebook login to log in to a speciic app, Facebook
will issue an app-speciic ID [1] (e.g., 106611716575863 as
shown in the case study in Figure 6) to the user which is
unique to each app, and such ID can also be easily crawled
(e.g., within the app). herefore, we also call this app-
speciic ID FID and consider it public available knowledge.
Similar to the email case, if we observe Alice’s FID is used
in a request message, we will replace it with Bob’s and
observe how server would respond the request.

4.2.3 Substituting Enumerable Fields

Now we have identiied all of the guessable ields, next Auth-
Scope will substitute them to decide whether there is a vulnerable
authorization implementation. his step is quite straightforward:
for any identiied enumerable ields in Alice’s request message,
our man-in-the-middle proxy will just replace the value of this
ield with Bob’s. If there are multiple ields, we will send multiple
request messages. Only one ield at a time is substituted in each
message, and we will not simultaneously substitute ields at the
same time (as it is unlikely that an authorization depends on two
ields).

4.3 Response Message Labeling
Aterwe have sent a ield substituted request message of Alice with
the value of Bob’s to the server, we then label the responsemessage
to determine whether the server is vulnerable. he key idea to
decide this is if the response message returns the identical ones
with the same response message requested by Bob, then the server
is vulnerable.

More speciically, we label a response message that is returned
by a ield-substituted Alice’s request message is identical to the
corresponding Bob’s response, if the user-speciic data in the re-
sponse message is the same (byte-by-byte identical). hat is, we
will remove those non-user speciic data (such as message-speciic
timestamp) using the diferential traic analysis again, i.e., the
alignment and difering approach described in §4.2.2 when identi-
fying the non-user speciic ield in the request messages. Without
diferential analysis, we will not be able to tell we have success-
fully retrieved Bob’s data by just byte-by-byte comparison of the
response messages if there is any message-speciic data. Ater
removing these non-user speciic data in the response message,
AuthScope outputs that the server is vulnerable if we ind an
identical response for the corresponding request interface. We
will keep substituting and labeling, until all the Alice’s request
messages have substituted. If none of the response messages are
identical with initial Bob’s, then the server is not vulnerable. A
server may have multiple vulnerable interfaces if multiple of its
server request interfaces are vulnerable.

Pruning the Vulnerable Interface that Provides Public Re-
sources. Certainly, AuthScope can have false positives if the

vulnerable interfaces identiied are used to provide the public re-
sources. Since it is a public resource, no mater how we substitute
the enumerable ields, the server will always return the same re-
sponse. For instance, a news app that provides news to subscribed
users may be lagged as vulnerable if the news is fetched ater
authentication and this news can also be accessed without login
(a public resource).

To further prune such cases, we then let AuthScope take one
more run of the app without loggin the service. hat is, when it
encounters the Facebook login interface, it directly skips it and
continues exploring the app as deeply as it can. We will align
these ater authentication-skipped request messages with those in
Alice’s and Bob’s. If we observe a previously identiied vulnerable
interface can actually serve the public resource, we will not lag it
vulnerable.

5 EVALUATION
We have implemented AuthScope atop Android 4.4 platform by
using the Xposed [6] framework to drive the app execution and per-
form targeted app exploration, and ourman-in-the-middle proxy is
implementedwith the Burp Suite [5]. In total, AuthScope consists
of over 5, 000 lines of our own Java code and 300 lines of our own
python scripts. In this section, we present our detailed evaluation
results.

5.1 Experiment Setup

Dataset Collection. As of today, Google Play has over 2 million
mobile apps. To have a reasonable coverage of these apps, we
crawled the top 10% of free mobile apps based on the number of
installs in March 2017. Recall that AuthScope requires automatic
login and currently we only focus on the apps that use Facebook
login, and thus we have to select such apps. To this end, we irst
analyzed the 200, 000 apps to ilter out those that do not import
any Facebook libraries. Note that if an app has not imported Face-
book libraries, deinitely it does not have Facebook login. Ater
this initial iltering, we have 33, 950 remaining apps.

However, even if an app has imported Facebook library, there is
no guarantee that it will use Facebook login, we have to perform a
further analysis. In particular, we have observed that there are two
ways to integrate Facebook login in an app: (1) directly put a Face-
book login buton (implemented by Facebook library) in one of its
activity layout iles, or (2) call Facebook login function using pro-
gram code. Based on these two observations, we design another
screening procedure, which irst checks whether the Facebook lo-
gin buton exists in one of its activity layout iles within an app; if
there does not exist such a buton, then continues to search code
that invoking Facebook login methods from the Facebook library.
his code search is implemented by using the Soot framework and
checking the function call paterns. If the ilter neither inds out
the Facebook login buton nor the invoking code, then this app
will be discarded. With all these iltering analyses, eventually we
have 4, 838 apps in our dataset.

Testing Environment. All of our apps were tested in a real LG
Nexus 4 smartphone with Android 4.4 system. his phone is in-
stalled with our app post-authentication message generation com-
ponent, and is connected with a Ubuntu 14.04 desktop running

Bo
oks

& Ref
ere

nce

Bu
sin

ess

Co
mm

uni
cat

ion

En
ter
tain

me
nt

Fin
anc

e

Foo
d &

Dri
nk

Ga
me

s

He
alth

& Fitn
ess

Lif
est

yle

Ma
ps

& Na
vig

atio
n

Me
dic

al

Mu
sic

& Au
dio

Ne
ws

& Ma
gaz

ine
s

Ph
oto

gra
phy

Pro
duc

tiv
ity

Sho
ppi

ng
Soc

ial
Too

ls

Tra
vel

& Loc
al

Vid
eo

Pla
yer

s &
Edi

tor
s

0

50

100

150
N
um

be
ro

fV
ul
ne

ra
bl
e
A
pp

s

Figure 5: Distribution of the Vulnerable Interfaces Based on the App Category.

Item Value
Σ # Apps 4, 838

Σ Time to perform the test (hours) 562.4

Σ # Request messages 3, 220, 886

Σ # HTTP Messages 178, 539

Σ Size of the messages (G-bytes) 59.2

Σ Time of activity exploration before authentication (hours) 169.9

Σ # Explored activities before authentication 15, 367

Σ # Identiied views before authentication 503, 441

Σ # Explored activities ater authentication 20, 704

Σ # Identiied views ater authentication 1, 181, 442

Σ # Mutated ields 57, 736

Σ # Suspicious interfaces 2, 976

Σ # Public interfaces 2, 379

Σ # Vulnerable interfaces 597

Table 2: Overall Experimental Result.

atop an Intel i7-6700k Skylake 4.00 GHz CPU with 8G memory.
his desktop controls the automatic app execution in the smart-
phone through the ADB interface by python script, andmeanwhile
intercepts, collects, and mutates the network messages between
the apps and remote servers, using our man-in-the-middle proxy.
Also, we registered with Facebook two test accounts Alice and Bob
with email address alice4testapp@gmail.com and bob4testapp@
gmail.com, respectively.

5.2 Evaluation Result

Macro Level. We spent 562.4 hours in total to dynamically ana-
lyze these 4, 838 apps, and eventually we discovered 597 vulner-
able authorization implementations in the corresponding servers
that map to 306 apps. he overall experimental result is presented
in Table 2. In total, we generated 3, 220, 886 request messages, and
among them, 178, 539 are HTTP protocols (the rest are HTTPS).
he total size of these messages is 59.2 G-bytes. To execute the
Facebook login, our analysis spent 196.9 hours, during which we
explored 15, 367 activities, and 503, 441 views. Ater we get au-
thenticated, we explored 20, 704 activities, and 1, 181, 442 views.

We mutated in total 57, 736 ields, and found 2, 976 suspicious
server interfaces that have vulnerable authorization implementa-
tion. Among them, our further analysis revealed that 2, 379 are
public resource interfaces. Eventually, we found 597 vulnerable
server interfaces ater pruning those that provide public resources,
and they map to 306 mobile apps.

To understand those popular vulnerable services, we present the
distributions of these vulnerable app servers based on the corre-
sponding top level app category2 assigned by Google Play. his re-
sult is shown in Figure 5. Interestingly, we found these apps belong
to 20 categories. he top three categories include Lifestyle (which
has 153 vulnerable interfaces), Game (99), and Shopping (72). One
reason of why these categories contain so many vulnerable imple-
mentation is that we found the apps in these categories typically
highly interactive, the user data is oten stored, shared, updated in
their servers, which also means there are more resources in those
apps and more complicated access control implementation. Also,
surprisingly, we found a number of vulnerable implementations
in Finance (3) and Business (9) related apps. he data leakage in
these servers can cause serious damages to the end users. We will
discuss the severity of these leakages in §6.

Micro Level. Ater we have described the overall result, next we
show clearly how AuthScope performs for each app. We selected
the top downloaded app in each vulnerable server category pre-
sented in Figure 5 and show the detailed result in Table 3. he
irst two columns are the category name and package name3, re-
spectively, followed by the numbers of activities that we explored,
and the numbers of unique views that we identiied during the
dynamic analysis on each app. he ith column is the time that
our system spent on inding Facebook login, which is the time from
starting the app to successfully login the app. he sixth column is
total numbers of request messages that the app has generated, the
seventh column is the total number of ields that we substituted
2he only exception is we further cluster all top level game sub-category into a game
category.
3For the apps whose servers have not been patched yet as the time of this writing, we
do not reveal their full name and instead anonymize their name with ***.

alice4testapp@gmail.com
bob4testapp@gmail.com
bob4testapp@gmail.com

Time to #Request #Mutated #Public #Vulnerable
Category Package Name Activities Views Login (s) Messages Fields Interfaces Interfaces
Books & Reference com.***.e*** 3 288 45 975 16 5 3
Business com.***.k*** 8 1,224 30 927 12 2 3
Communication com.***.w*** 18 970 41 727 1 0 1
Entertainment com.***.c*** 3 184 32 739 2 0 1
Finance com.***.m*** 8 549 16 790 7 0 2
Food & Drink com.***.h*** 10 924 21 1,032 8 4 1
Games com.***.c*** 7 609 20 1,050 7 3 1
Health & Fitness com.***.u*** 12 788 15 966 10 2 2
Lifestyle com.m*** 17 1,938 25 1,229 29 5 5
Maps & Navigation com.***.***.c*** 11 667 26 490 12 7 1
Medical com.***.a*** 18 1,616 23 927 9 2 1
Music & Audio com.b*** 2 456 25 933 15 3 1
News & Magazines com.***.a*** 5 462 37 880 9 0 2
Photography com.***.j*** 15 909 26 965 7 0 1
Productivity com.***.d*** 15 1,347 32 882 10 5 1
Shopping cl.***.***.i*** 8 795 44 961 10 0 5
Social in.v*** 10 645 20 1,068 20 4 5
Tools com.mediaingea.uptodown.lite 7 1,347 112 1,276 25 6 1
Travel & Local com.t*** 5 321 35 1,024 10 0 2
Video Players & Editors cz.***.n*** 4 218 25 821 5 1 1

Table 3: Detailed Experimental Results for Top Tested App in Each Category.

Category Detailed Privacy Type
User E-Proile 01 Email, 02 User ID, 03 Registration Date, 04 IP Address, 05 Last Login Date, 06 Last Update Date
User Physical-Proile 07 Real Name, 08 Birthday, 09 Geo-location, 10 Home Address, 11 Phone Number, 12 Body Information
User Secrets 13 Token, 14 Password, 15 Pass Code
App Speciic Private Data 16 In App Messages, 17 Shopping History, 18 Book Shelf, 19 Favorites or Subscription, 20 Account Balance

21 Contacts Information, 22 Payment Information, 23 Private Activity Information
Table 4: User Privacy

Credential User User User App Speciic
APP Version Type E-Proile Physical-Proile Secrets Private Data
com.***.e*** 2.2 N 01 01 01 02 07 08 01 10 11 01 01 18
com.***.k*** 2.0.11 01E 01 01 02 03 04 01 06 07 01 09 10 11 13 14 01 17 01 19
com.***.w*** 1.0.5 01 01F 01 02 07 13 16 01 01 19 01 21
com.g***.c*** 2.4.1 01E 01 01 02 01 01 01 01 11 13 01 17 01 01 20
com.***.m*** 1.6.8 N 01 01 01 02 07 01 09 10 11 01 01 15 16 01 01 01 20 01 22
com.***.h*** 2.5.6.0 01E 01 01 02 13 16 01 01 19
com.***.c*** 2.6.1 01 01F 01 07 01 01 10 13 01 01 01 19
com.***.u*** 2.03 N 01 01 01 02 03 07 08 01 01 01 12 16 01 01 19
com.m*** 7.3.0 N 01 01 01 02 07 08 01 10 16 01 01 19 20
com.***.***.c*** 7.5.5v 01 01F 01 02 07 01 09 10 11 13 01 01 01 19 01 01 22
com.***.a*** 3.09 01 01F 01 02 07 13 16 01 01 19
com.b*** 2.0.4 N 01 01 01 01 01 19
com.***.a*** 2.3.2 N 01 01 01 01 03 04 05 07 08 09 13 16 01 01 19
com.***.j*** 2.7.4 01 01F 01 02 03 07 13 16 01 01 19
com.***.d*** 2.4.2 01E 01 01 02 03 07 01 09 13 01 01 01 01 01 01 01 23
cl.***.***.i*** 2.1.0 N 01 01 01 02 07 08 09 01 01 01 01 20
in.v*** 4.4.5.2 N 01 01 07 08 16 01 01 19 01 21
com.mediaingea.uptodown.lite 3.18 01 01F 01 02 13 16 01 01 19
com.t*** 1.4.0 01 01F 01 02 01 01 01 10 11 13 16 01 01 01 01 01 01 23
cz.***.n*** 4.8 01 01F 01 02 07 13 01 01 01 01 01 01 01 23

Statistics 8 4 8 14 16 05 02 01 01 15 06 06 07 06 01 13 01 01 11 02 01 13 04 02 02 03
Table 5: Vulnerability Details for Top Tested App in Each Category, where N denotes Numeric values, E denotes Emails,
and F denotes Facebook IDs.

for the tested app, the eighth column is the number of public in-
terface identiied, and the last column is the number of vulnerable
interface discovered for the tested app.

We can notice from Table 3 that some apps have many activities,
which means it would be really hard to use blind dynamic analysis
tools such as Monkey [7] to explore all of these activities. Also, all
apps have hundreds of request messages. his is actually because
many of the messages are related to Facebook login. In our ex-
periment, we found for each Facebook login, Facebook library will
generate hundreds of request messages to static.xx.fbcdn.net to
retrieve js iles.

Also, the last column shows that 9 apps have more than one
(from 2 to 5) vulnerable authorization interfaces at the server side,
and 13 apps also contain several (from 1 to 7) public interfaces.
Interestingly, we also ind if the atack surface is either email ad-
dress or FID, then there will be just one vulnerable interface (and
this interface is usually the one serves the irst request message
right ater authenticated with Facebook). If the atack surface is
a predictable number, then there are likely more than one vulner-
able interfaces. his is because likely all other requests also use
the predictable number, which makes their corresponding server
interfaces all vulnerable.

6 SECURITY ANALYSIS
6.1 Systematized Analysis
Next, we would like to understand what kind of data leakage the
vulnerable access control implementation can cause and how se-
vere they are. To this end, we have manually examined the 20
vulnerable app servers for the app presented in Table 3. To sys-
tematize the leakage, we irst classify the leaked data into four
categories as shown in Table 4 (based on our best understanding)
including user e-proile such as her email address, service reg-
istration date, IP address, last login date, last update date; user
physical proile such as full name, birthday, geo-location, home
address, phone number, and body information such as weight and
height; user secrets such as access token, user password (either
plaintext or hashed), app pass code; and app speciic private data
such as shopping history, book shelf, favorites, payment informa-
tion, account balance, etc. Based on these classiication, we looked
into each of the vulnerable service interface and examined their
data leakage. he detailed result for these 20 vulnerable servers is
presented in Table 5.

From the 3rd column of Table 5, we notice that 8 out of 20
vulnerable servers just use predictable numbers to access a user’s
private information (e.g., for app cl.***.***.i*** and we will just
call it I app, our user Alice has a UID 673436 and Bob has 673491
as presented in Figure 6), 4 use email addresses, and 8 use FIDs.
Also, we can observe that various user private data can be leaked
from the vulnerable servers. he top leaked data includes UID (16),
email address (14), and security token (13). Note that these tokens
actually belong to Bob, but can be retrieved by Alice. Meanwhile,
surprisingly, some of the servers even leak user’s password, as
shown in Figure 7. his is astonishing, since a user’s password
should never be leaked to a client regardless of the query.

In short, given such easily predictable numbers and potentially
public available email addresses and FIDs without any further au-
thorization checks, it makes an atacker trivially crawl all user’s

00 {
01 ...
02 "response":{
03 "user":{
04 "idnum":false,
05 "name":"Bob",
06 "lastname":"Ccs",
07 "birthday":"1990-04-26",
08 "gender":"M",

09 "email":"bob4testapp@gmail.com",
10 "type":"EMAIL",
11 "firstlogin":"1",
12 "country":{
13 "id":"10",
14 "name":"United States",
15 ...
16 },
17 "post_on_activities":"disabled",
18 "bananas_count":0,
19 "id":"673491",
20 "fbid_number":"106611716575863",
21 "current_latitude":”30.9863214",
22 "current_longitude":”-86.7501116",
23 "bananas_history":"https:\/\/profile.*******.com\/bananas\

/store\/673491\/?accesstoken=debda35ccd92f4b8e2e06f0bff3b6e49279
a557d&latitude=30.9863214&longitude=-86.7501116&lang=",
24 ...
25 }
26 }
27 }

Figure 6: Alice Read Bob’s Account Information in
app I .

private data from the victim servers. In our experiment setings,
an adversary can possibly get up to 61 million mobile users pri-
vate record according to the total number of downloads for all the
vulnerable apps.

6.2 Case Studies
As demonstrated in our systematized analysis, vulnerable autho-
rization can easily lead to user private data leakage. To understand
this threat more concretely, in the following, we would like to
perform further analysis of two mobile apps, namely the I app
and com.***.k*** (we just call it K) app from Table 3, to show
how they could leak user’s privacy sensitive data including user’s
secrets. hese two case studies require detailed knowledge of the
mobile apps and were conducted manually.

Sensitive Data Leakage. We use I app as an example to illus-
trate this atack. I app is a very popular app in Google Play with
100, 000 to 500, 000 downloads. his app can provide discount in-
formation for shopping. During our test, AuthScope intercepted
the Alice’s request which asks for personal information, and re-
placedAlice’s account ID or UID (673436) with Bob’s UID (673491)
for a new request. Figure 6 shows a portion of the response mes-
sage. We can see clearly that it leaks a lot of Bob’s sensitive infor-
mation, including his birthday, gender, email, Facebook ID, current
location and balance history.

For this app and so many other alike apps, the atacker only
needs to get the UID of a user to perform the atack. Moreover, to
get other’s UID is relatively straightforward. In this app, the UID
is generated incrementally, not randomly. Given such a 6-bit UID
and its install numbers, statically, an atacker can easily enumer-
ate other’s UID. Since this app has close to 500, 000 installs, an
adversary can easily retrieve 500, 000 user’s private information.

00 {
01 "pk_i_id": "163126",
02 "dt_reg_date": "2017-04-30 23:21:59",
03 "dt_mod_date": "2017-04-30 23:36:58",
04 "s_name": "Bob Ccs",
05 "s_username": "163126",
06 "s_password": "7c4a8d09ca3762af61e59520943dc26494f8941b",
07 "s_secret": "6stgMaAb",
08 "s_email": "bob4testapp@gmail.com",
09 "s_website": "bob.ccs\/index.html",
10 "s_phone_mobile": "4695855213",
11 "s_pass_ip": null,
12 "fk_c_country_code": null,
13 "s_country": "Tanzania",
14 "s_address": "15246 Sni Rd. APT 252 Tanzania",
15 "fk_i_region_id": "17",
16 "s_region": "Mara",
17 "d_coord_lat": null,
18 "d_coord_long": null,
19 "b_company": "0",
20 "i_items": "1",
21 "i_comments": "0",
22 "dt_access_date": "2017-04-30 23:46:05",
23 "s_access_ip": "",
24 "b_prefer_phone": "1",
25 "s_dialing_code": "+255",
26 "fk_i_category_id": "22",
27 "s_facebook_page": "http:\/\/",
28 ...
29 }

Figure 7: Alice Read Bob’s Information in app K .

Secret Data Leakage. Other than user’s private data, more sen-
sitive secret data can also be leaked from the vulnerabilities dis-
covered by AuthScope. Considering the K app as an example,
it is a second-hand goods trading app on Google Play, which has
between 500, 000 and 1, 000, 000 downloads. With this app, any
registered user can sell/buy second-hand goods. Unfortunately,
we found the authorization vulnerability can lead to user’s secret
data leakage.

In particular, ater authentication, the server will push detailed
information of the user based on her email address. Ater substi-
tuting Alice’s email with Bob’s, AuthScope successfully got Bob’s
information, part of which is shown in Figure 7. As we can see,
there are quite a number of private records in the responsemessage
such as the registration date (line 2), modiication date (line 3), user
name (line 4), phone number (line 10), home address (line 14), Geo-
location (line 17, 18 which is null in our test case), last login time
(line 22). Among these leaked data, the most dangerous record is
Bob’s hashed password (which is 7c4a8d09ca3762af61e59520943
dc26494f8941b). Under no circumstance should the app provide
user’s password to the user. With a further investigation, we found
this hash password is generated by SHA-1, which can be easily
cracked bymany online services (e.g., https://crackstation.net/ which
takes less than a second to return the plaintext of this password).

With this authorization vulnerability in K ’s server, an atack
can easily get the hashed password, and further crack a user’s pass-
word when provided with the victim’s email address. Recently,
there are huge data breaches and likely the atacker can trivially
probe the victim’s email in K ’s server. However, we also found
when opening a seller’s page, her email address is embedded in
the meta data. herefore, an adversary can also crawl all the prod-
ucts in this service and get all seller’s email, and further get their
hashed password. Considering that most online users today reuse
their password, such an atack can cause serious damages to many
online users.

7 DISCUSSIONS

Limitations and Future Works. While AuthScope has made
a irst step towards automatic discovery of authorization vulnera-
bilities in online service, it still has a number of limitations. First,
clearly AuthScope has false negatives. For instance, we only fo-
cused on the apps that use Facebook login (essentially using Face-
book login to bypass the authentication step), but not all the apps
have been using this social login. In our experiment, we iltered
more than 25, 000mobile apps that do not contain Facebook logins.
How to handle other social login schemes (e.g., Google login), or
in general how to automatically login a remote service is still an
unsolved problem. his may require solving the challenges of au-
tomated service sign up, more intelligent Android UI recognition
and test case generation, etc.

Second, AuthScope only discovers the authorization vulnera-
bility that leads to the information leakage and account hijacking
atacks. Basically, these are atacks that lead to unauthorized read.
However, there are also many other interesting atacks such as
the unauthorized write. For instance, a user should not modify any
items that belong to other users. Currently, AuthScope is not able
to infer the unauthorized write automatically.

Finally, the vulnerable authorization is a general problem in
online services and is not just limited to Android app’s server side
implementation. Currently, we only developed the prototype that
performs dynamic Android app analysis and protocol reverse engi-
neering to infer the vulnerability, and we believe our methodology
can also be applied to other platforms such as iOS and Windows.
Also, AuthScope currently only handles the network communica-
tions with HTTP/HTTPS protocols. We will study how to enable
AuthScope to analyze the vulnerabilities for other platforms and
other protocols, as well as addressing the irst two limitations in
our future work.

Practicality of the Attack and Countermeasures. It is abso-
lutely incorrect to use predictable numbers without further autho-
rization checks to allow access of a user’s private resource. How-
ever, service developers may feel it is secure to just use email ad-
dress or other sophisticated numbers such as Facebook ID for the
authorization. However, we have to note that recently there are
massive data leakages and huge volume of Internet user’s email ad-
dresses have been leaked. We have to consider that email address
is a public information now. Also, Facebook ID can be crawled
and it can also be considered public. herefore, the atacks we
discovered are quite practical. To really ix these vulnerabilities,
we urge service developers to follow the best practices (as we have
discussed in §2.3) such as using random token in each session,
enforcing the security checks with the token and particular user,
and never assuming that a client is always trusted.

Ethics and Responsible Disclosure. When developing Auth-
Scope for vulnerability discovery, we do take ethics in the highest
standard. First, we only tested the services with the two legitimate
users we registered (namely Alice and Bob), and we never steal any
other user’s private information. Second, we never sent a large
volume of traic to a remote service (to perform any denial of
service atack), and all the traic is generated at the speed as how

https://crackstation.net/

a normal user interacts with the remote system. Finally, we have
made responsible disclosures when we discover a vulnerability.

In particular, we have immediately notiied the developers based
on the corresponding contact information on Google Play. As
a result, some app developers contacted us to discuss the details
of their server vulnerabilities and we have worked together with
them to patch the vulnerabilities. For those apps whose vulnera-
bilities have not been ixed yet at the time of this writing, we do
not reveal their concrete app names and instead just masked their
names with symbol ‘***’ as shown in Table 3. We will continue to
provide our best eforts to help ix their vulnerabilities.

8 RELATEDWORK

Vulnerability Discovery in Online Services. It is challenging
to develop vulnerability free sotware, and many online services
contain various vulnerabilities ranging from SQL injection [21],
cross-site-scripting [37], cross-site-forgery [11], to broken authen-
tication [19], and even application logic vulnerabilities (e.g., [33,
39, 40, 43]). Correspondingly, signiicant amount of eforts have
been focusing on identifying these vulnerabilities through either
white-box analysis with server code, or black-box analysis with
just network traic.

here are also eforts to particularly study the access control
issues in the online services. Most of them focused on the au-
thentication related problems, such as security with single-sign on
(e.g., [38, 45]), oauth (e.g., [15, 36]), authentication vulnerability
scanning (e.g., [10]), and password brute-force atacks with on-
line services (e.g., [47]). Compared to these works, AuthScope is
among the irst few to look into the post-authentication issues in
online services and is able to automatically discover the vulnerable
authorizations when given mobile apps enabled with social login.

Dynamic Analysis of Mobile Apps. AuthScope leverages dy-
namic analysis of Android apps to generate server request mes-
sages. In the past several years, there are a large body of research in
dynamic analysis of Android apps (e.g,. Monkey [7], Robotium [4],
AppsPlayground [34], and DynoDroid [26]). Recently, there are
also eforts of using symbolic execution (e.g., [8, 29, 42, 46] formore
systematic dynamic analysis of mobile apps.

Compared to these works, AuthScope is partially inspired by
AppsPlayground andwe have extended it to supportmore accurate
and deeper UI element exploration. While we can also leverage the
symbolic execution to have beter coverage, we realize that wemay
not need symbolic execution as identifying vulnerable authoriza-
tion may not need large volume of request messages. Certainly,
symbolic execution will help though.

Protocol Reverse Engineering. AuthScope needs to reverse
engineer the application protocol ields of interest and then per-
form ields substitution to identify security vulnerabilities. Over
the past decade, there are signiicant amount of eforts of analyz-
ing both network messages (e.g., [13, 16, 17, 25]) and instructions
traces (e.g., [14, 18, 22, 23, 28, 41]) to discover protocol formats
and use them for security applications. AuthScope is particularly
inspired by the protocol informatics project [13], and uses a cus-
tomized Needleman-Wunsch algorithm [30] to align and dif the
protocol messages and infer only the ields of our interest.

9 CONCLUSION
We have presented the design, implementation, and evaluation of
AuthScope, a tool that is able to automatically execute a mobile
app, generate post-authentication messages, and pinpoint the vul-
nerable access control implementations, particularly the vulnera-
ble authorizations, on the server side. We have tested AuthScope
with 4, 838 popular mobile apps from Google Play, and identiied
597 vulnerable authorization implementations in 306mobile apps.
hese are very serious security vulnerabilities, very easy to atack,
and can cause severe damages to end users such as personal infor-
mation leakage and account hijacking. We have made responsible
disclosure to all of the vulnerable service providers, and many of
them have acknowledged us and patched (or started to patch) their
vulnerabilities. Finally, given the capability of such an automated
analysis, we would like to raise the awareness of the vulnerable au-
thorization implementation issues in online services and hope the
rest vulnerable service providers could patch their services shortly.

ACKNOWLEDGMENT
We would like to thank the anonymous reviewers for their very
helpful feedbacks. his research was supported in part by AFOSR
under grants FA9550-14-1-0119 and FA9550-14-1-0173, and NSF
awards 1453011 and 1516425. Any opinions, indings, conclusions,
or recommendations expressed are those of the authors and not
necessarily of the AFOSR and NSF.

REFERENCES
[1] “Facebook app-speciic ids,” https://developers.facebook.com/docs/graph-api/

reference/user/.
[2] Hypertext transfer protocol. https://www.w3.org/Protocols/rfc2616/rfc2616.

html. Last accessed in May 2017.
[3] “Plain text ofenders,” last accessed in May 2017.
[4] “Robotium,” https://code.google.com/p/robotium/, last accessed in May 2017.
[5] “Using burp proxy,” https://portswigger.net/burp/help/proxy_using.html, last

accessed in May 2017.
[6] “Xposed module repository,” http://repo.xposed.info/.
[7] “Ui/application exerciser monkey,” https://developer.android.com/tools/help/

monkey.html, 2017.
[8] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic testing

of smartphone apps,” in Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Sotware Engineering, ser. FSE ’12. New York,
NY, USA: ACM, 2012, pp. 59:1–59:11.

[9] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, “Flowdroid: Precise context, low, ield, object-
sensitive and lifecycle-aware taint analysis for android apps,” in Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’14. New York, NY, USA: ACM, 2014, pp. 259–269.

[10] G. Bai, J. Lei, G. Meng, S. S. Venkatraman, P. Saxena, J. Sun, Y. Liu, and J. S.
Dong, “Authscan: Automatic extraction of web authentication protocols from
implementations.” in NDSS, 2013.

[11] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for cross-site request
forgery,” in Proceedings of the 15th ACM conference on Computer and communi-
cations security. ACM, 2008, pp. 75–88.

[12] E. Bauman, Y. Lu, and Z. Lin, “Half a century of practice: Who is still storing
plaintext passwords?” in Proceedings of the 11th International Conference on
Information Security Practice and Experience, Beijing, China, May 2015.

[13] M. Beddoe, “he protocol informatics project,” 2017, https://github.com/
wolever/Protocol-Informatics.

[14] J. Caballero and D. Song, “Polyglot: Automatic extraction of protocol format
using dynamic binary analysis,” in Proceedings of the 14th ACM Conference
on Computer and and Communications Security (CCS’07), Alexandria, Virginia,
USA, 2007, pp. 317–329.

[15] E. Y. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and P. Tague, “Oauth demystiied
for mobile application developers,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2014, pp. 892–
903.

[16] A. Continella, Y. Fratantonio, M. Lindorfer, A. Pucceti, A. Zand, C. Kruegel, and
G. Vigna, “Obfuscation-resilient privacy leak detection for mobile apps through

https://developers.facebook.com/docs/graph-api/reference/user/
https://developers.facebook.com/docs/graph-api/reference/user/
https://www.w3.org/Protocols/rfc2616/rfc2616.html
https://www.w3.org/Protocols/rfc2616/rfc2616.html
https://code.google.com/p/robotium/
https://portswigger.net/burp/help/proxy_using.html
http://repo.xposed.info/
https://developer.android.com/tools/help/monkey.html
https://developer.android.com/tools/help/monkey.html
https://github.com/wolever/Protocol-Informatics
https://github.com/wolever/Protocol-Informatics

diferential analysis,” in Proceedings of the ISOC Network and Distributed System
Security Symposium (NDSS), 2017, pp. 1–16.

[17] W. Cui, J. Kannan, and H. J. Wang, “Discoverer: Automatic protocol reverse
engineering from network traces,” in Proceedings of the 16th USENIX Security
Symposium (Security’07), Boston, MA, August 2007.

[18] W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-Briz, “Tupni: Automatic
reverse engineering of input formats,” in Proceedings of the 15th ACMConference
on Computer and Communications Security (CCS’08), Alexandria, Virginia, USA,
October 2008, pp. 391–402.

[19] M. Dalton, C. Kozyrakis, and N. Zeldovich, “Nemesis: Preventing authentica-
tion & access control vulnerabilities in web applications.” in USENIX Security
Symposium, 2009, pp. 267–282.

[20] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and
L. Stewart, “Htp authentication: Basic and digest access authentication,” Tech.
Rep., 1999.

[21] W. G. Halfond, J. Viegas, and A. Orso, “A classiication of sql-injection atacks
and countermeasures,” in Proceedings of the IEEE International Symposium on
Secure Sotware Engineering, vol. 1. IEEE, 2006, pp. 13–15.

[22] Z. Lin, X. Jiang, D. Xu, and X. Zhang, “Automatic protocol format reverse
engineering through context-aware monitored execution,” in Proceedings of the
15th Annual Network and Distributed System Security Symposium (NDSS’08), San
Diego, CA, February 2008.

[23] Z. Lin and X. Zhang, “Deriving input syntactic structure from execution,” in
Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations
of Sotware Engineering (FSE’08), Atlanta, GA, USA, November 2008.

[24] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically veting android
apps for component hijacking vulnerabilities,” in Proceedings of the 2012 ACM
conference on Computer and communications security. ACM, 2012, pp. 229–240.

[25] J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. M. Voelker, “Unexpected
means of protocol inference,” in Proceedings of the 6th ACM SIGCOMM on
Internet measurement (IMC’06). Rio de Janeriro, Brazil: ACM Press, 2006, pp.
313–326.

[26] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation system
for android apps,” in Proceedings of the 2013 9th Joint Meeting on Foundations of
Sotware Engineering. ACM, 2013, pp. 224–234.

[27] A. Memon, I. Banerjee, and A. Nagarajan, “Gui ripping: Reverse engineering
of graphical user interfaces for testing,” in Proceedings of the 10th Working
Conference on Reverse Engineering, ser. WCRE ’03. Washington, DC, USA: IEEE
Computer Society, 2003, pp. 260–.

[28] P. Milani Compareti, G. Wondracek, C. Kruegel, and E. Kirda, “Prospex:
Protocol Speciication Extraction,” in IEEE Symposium on Security & Privacy,
Oakland, CA, 2009, pp. 110–125.

[29] N. Mirzaei, S. Malek, C. S. Păsăreanu, N. Esfahani, and R. Mahmood, “Testing
android apps through symbolic execution,” ACM SIGSOFT Sotware Engineering
Notes, vol. 37, no. 6, pp. 1–5, 2012.

[30] S. B. Needleman and C. D. Wunsch, “A general method applicable to the search
for similarities in the amino acid sequence of two proteins,” Journal of molecular
biology, vol. 48, no. 3, pp. 443–453, 1970.

[31] B. Nguyen, B. Robbins, I. Banerjee, and A. Memon, “Guitar: an innovative tool
for automated testing of gui-driven sotware,” Automated Sotware Engineering,

pp. 1–41, 2013.
[32] E. I. Organick, he multics system: an examination of its structure. MIT press,

1972.
[33] G. Pellegrino and D. Balzaroti, “Toward black-box detection of logic laws in

web applications.” in NDSS, 2014.
[34] V. Rastogi, Y. Chen, and W. Enck, “AppsPlayground: Automatic Security

Analysis of Smartphone Applications,” in hird ACM Conference on Data and
Application Security and Privacy, 2013.

[35] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L. Khan, “Smv-hunter:
Large scale, automated detection of ssl/tls man-in-the-middle vulnerabilities in
android apps,” in Proceedings of the 21st Annual Network and Distributed System
Security Symposium (NDSS’14), San Diego, CA, February 2014.

[36] S.-T. Sun and K. Beznosov, “he devil is in the (implementation) details: an
empirical analysis of oauth sso systems,” in Proceedings of the 2012 ACM
conference on Computer and communications security. ACM, 2012, pp. 378–390.

[37] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, andG. Vigna, “Cross site
scripting prevention with dynamic data tainting and static analysis.” in NDSS,
vol. 2007, 2007, p. 12.

[38] R. Wang, S. Chen, and X. Wang, “Signing me onto your accounts through
facebook and google: A traic-guided security study of commercially deployed
single-sign-on web services,” in Security and Privacy (SP), 2012 IEEE Symposium
on. IEEE, 2012, pp. 365–379.

[39] R.Wang, S. Chen, X.Wang, and S. Qadeer, “How to shop for free online–security
analysis of cashier-as-a-service based web stores,” in Security and Privacy (SP),
2011 IEEE Symposium on. IEEE, 2011, pp. 465–480.

[40] R. Wang, Y. Zhou, S. Chen, S. Qadeer, D. Evans, and Y. Gurevich, “Explicating
sdks: Uncovering assumptions underlying secure authentication and authoriza-
tion.” in USENIX Security, vol. 13, 2013.

[41] G. Wondracek, P. Milani, C. Kruegel, and E. Kirda, “Automatic network protocol
analysis,” in Proceedings of the 15th Annual Network and Distributed System
Security Symposium (NDSS’08), San Diego, CA, February 2008.

[42] M. Y.Wong and D. Lie, “Intellidroid: A targeted input generator for the dynamic
analysis of android malware,” in Proceedings of the 21st Annual Network and
Distributed System Security Symposium (NDSS’16), San Diego, CA, February
2016.

[43] L. Xing, Y. Chen, X. Wang, and S. Chen, “Integuard: Toward automatic
protection of third-party web service integrations.” in NDSS, 2013.

[44] L. Xing, X. Pan, R. Wang, K. Yuan, and X. Wang, “Upgrading your android,
elevating my malware: Privilege escalation through mobile os updating,” in
Proceedings of the 2014 IEEE Symposium on Security and Privacy, ser. SP ’14.
Washington, DC, USA: IEEE Computer Society, 2014, pp. 393–408.

[45] Y. Zhou and D. Evans, “Ssoscan: Automated testing of web applications for
single sign-on vulnerabilities.” in USENIX Security, 2014, pp. 495–510.

[46] C. Zuo and Z. Lin, “Exposing server urls of mobile apps with selective symbolic
execution,” in Proceedings of the 26th World Wide Web Conference, Perth, Aus-
tralia, April 2017.

[47] C. Zuo, W. Wang, R. Wang, and Z. Lin, “Automatic forgery of cryptographically
consistent messages to identify security vulnerabilities in mobile services,”
in Proceedings of the 21st Annual Network and Distributed System Security
Symposium (NDSS’16), San Diego, CA, February 2016.

	Abstract
	1 Introduction
	2 Background
	2.1 Authentication and Authorization
	2.2 Authorization Security in UNIX/Linux
	2.3 Secure Authorization in Online Service

	3 Overview
	3.1 A Running Example
	3.2 Challenges and Key Insights
	3.3 System Overview

	4 Detailed Design
	4.1 Post-Authentication Message Generation
	4.2 Message Field Recognition and Substitution
	4.3 Response Message Labeling

	5 Evaluation
	5.1 Experiment Setup
	5.2 Evaluation Result

	6 Security Analysis
	6.1 Systematized Analysis
	6.2 Case Studies

	7 Discussions
	8 Related Work
	9 Conclusion
	References

