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ABSTRACT
Many IoT devices today talk to each other via Bluetooth Low Energy
(BLE), a wireless communication technology often used to exchange
data between a paired central and peripheral. These peripheral de-
vices include not only� rmware-de�ned bare-metal peripherals but
also mobile application de�ned peripherals where a mobile app
turns a smartphone into a peripheral instead of their usual central
role. However, this role reversal increases the attack surface and
brings vulnerabilities in bare-metal Bluetooth peripherals to mobile
appswhere relevant security and privacy have not beenwell studied.
To� ll this knowledge gap, this paper presents PeriScope, an auto-
mated tool to unveil the security and privacy vulnerabilities at the
link layer of app-de�ned Bluetooth peripherals in the procedures
of broadcasting, pairing, and communication by systematically an-
alyzing their companion mobile apps. PeriScope has analyzed 1,160
Bluetooth peripheral apps from Google Play and identi�ed 69.13%
of them that broadcast device or personal identi�able information
in cleartext, and, in addition, there are 95% pieces of data managed
by these apps (e.g., personal health data and digital keys to unlock
doors) to exchange with connected devices can be accessed without
authentication. Finally, a set of guidelines for secure app-de�ned
Bluetooth peripherals development is also provided.

CCS CONCEPTS
• Security andprivacy→ Security protocols;Mobile andwire-
less security; Software reverse engineering; Privacy protec-
tions; Access control.
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1 INTRODUCTION
Bluetooth Low Energy (BLE) is ubiquitous today, especially among
small Internet-of-Things (IoT ) devices (e.g., Apple AirTag), because
it allows a pair of devices to exchange data with extremely low
energy consumption. In particular, communications between two
connected BLE devices are typically operated in a client-server
mode, where one device called central acts as the client, and the
other device called peripheral functions as the server. When discon-
nected, the peripheral constantly broadcasts advertising packets
to declare its existence, and the central keeps scanning for adver-
tising packets to discover nearby peripherals, and then establishes
a connection with them if necessary (e.g., smartphone requesting
heart rate data from a� tness tracker).
App-de�nedBluetoothPeripheral (AdBP).While Bluetooth pe-
ripherals are often referred to as� rmware-de�ned bare-metal IoT
devices (e.g., AirTag), they can also be software-de�ned Bluetooth
peripherals. We call these peripherals that are enabled via mobile
apps with support from both the hardware (i.e., the Bluetooth chip
in the smartphone) and the operating system (no bare-metal any-
more) as app-de�ned Bluetooth peripherals (AdBP). In particular,
to ease the development e�ort, mobile operating systems (e.g., An-
droid) hide all low level details of BLE communications, such as the
management of the operations at both BLE link layer and physical
layer, and provide system APIs for developers to con�gure a smart-
phone as a BLE peripheral. Its development convenience as well
as the rich sensors and the ubiquity of smartphones bring AdBP
promising potentials in many scenarios. For instance, most recently,
AdBP has been used for automated contact tracing to� ght against
COVID-19 pandemic in many countries.

Unfortunately, AdBP can arise serious security and privacy con-
cerns because of its enlarged attack surface which is discovered in
bare-metal Bluetooth peripherals. However, there only exist a few
relevant studies that either focus on a particular problem (e.g., MAC
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address based tracking [8]) or vulnerabilities in a speci�c applica-
tion (e.g., digital contact tracing [2]), lacking a uni�ed perspective
on the security and privacy in AdBP leaving this� eld largely unex-
ploited. In particular, it remains unknown how many mobile apps
are able to de�ne Bluetooth peripherals, what are their security
and privacy practices, and to which extent their consequent issues
would impact normal users. For example, whether these periph-
erals would su�er similar vulnerabilities as those in bare-metal
peripherals (e.g., AirTag), including broadcasting device identi�able
information (i.e., static service UUIDs) [11, 55] and leaking sensitive
data [15, 16, 50].

These aforementioned concerns are not hypothetical. In our pre-
liminary study, we have identi�ed an industry leading app, Ly�
Driver, that places the driver ID in its advertising packets when
it turns the smartphone into a BLE peripheral. This driver ID rep-
resents the identity of a driver and allows attackers to track the
movements of a driver, which may reveal� ne-grained personal
identi�able information. We also have discovered an account un-
locking app that con�gures no security protection on a piece of
its sensitive data, i.e., the keys to unlock user accounts. Such a
vulnerable con�guration makes these credentials accessible to any
connected centrals without authentication.
Objectives. To shed light on these aforementioned questions, this
paper takes the� rst step towards unveiling the security and pri-
vacy in AdBP . To this end, this paper� rst develops a threat model
including unique attack surfaces and adversarial objectives, par-
ticular in the link layer of an AdBP , and then presents the design
and implementation of an automated tool, PeriScope, to automati-
cally uncover the vulnerabilities by systematically analyzing the
companion apps. First, considering there is no speci�c category of
the companion apps of AdBP in public markets, PeriScope takes a
mobile app as input and scans its system API usages which endorse
the presence of a unique and essential functionality of a Bluetooth
peripheral (i.e., broadcasting service UUID) to recognize an AdBP .
Next, it combines inter-procedural static backward slicing alongside
forward string value analysis to capture the generation procedures
of a piece of data that is involved in an AdBP communication at the
link layer, and then resolve its associated value to obtain its con-
tent, semantic, and applied security protections. Finally, PeriScope
inspects both the semantic and content of a piece of data and its
associated security protections to identify potential vulnerabilities
according to the threat model. Moreover, after systematizing vul-
nerabilities in real-world applications at scale, this paper aims to
propose a set of guidelines for secure development with the hope to
preventing severe security and privacy impacts at the early stage.
Our Findings. PeriScope has recognized 1,160 AdBP companion
apps after scanning all free apps in Google Play as of the end of
September 2021 and identi�ed vulnerabilities at the link layer in
the procedures of broadcasting (i.e., broadcasting device or per-
sonal identi�able information in cleartext) and communication (i.e.,
sensitive data access without authentication). Speci�cally, in the
broadcasting procedure, PeriScope has identi�ed 799AdBP compan-
ion apps that broadcast device identi�able information (i.e., static
UUID) which makes them subject to the device (and in this case
app)� ngerprinting attacks [11, 55], three apps that even use user
identi�able information as their broadcast UUIDs, and 537 apps that

also broadcast another potential of user identi�able information,
i.e., the user customized phone name (e.g., Alice’s pixel).

On the other hand, in the communication procedure, PeriScope
has identi�ed a total of 662 apps managing 1,752 pieces of data
in the exchange between a pair of connected devices. Speci�cally,
1,430 pieces of data are con�gured to allow read operations, and
1,233 of them are set to accept write operations. However, these
apps con�gure no protection on 95.10% of those data that allow
reading and 94.81% of them that accept writing. After manually
inspecting the readable data without protection from a set of top
apps based their install number shown on Google Play, we have
identi�ed an improper access control that can leak a wide range of
sensitive data, which include but not limited to personal health data,
digital identi�ers of users, and even digital keys to unlock doors.

In addition to the identi�ed vulnerabilities, this study presents
an overview of the ecosystem of AdBP . As of this writing, AdBP are
present in 28 categories labelled by Google Play, with the leading
categories include “Tools”, “Lifestyle”, and “Education”, according
to the number of apps per category. In addition, based on the man-
ufacturer ID which is a unique number assigned by the Bluetooth
SIG, this ecosystem currently involves 61 manufacturers (at least)
that contribute to 501 apps. To our surprise, among these apps, this
study discovers 351 of them that violate the manufacturer ID usage
policy de�ned by Bluetooth SIG. Speci�cally, there are 243 apps
that place manufacturer IDs belonging to other manufacturers in
their advertising packets, 91 apps that use unassigned IDs, and 17
apps that even use the preserved ID for internal testing in shipping
products, which is disallowed [32].
Contribution. Our study makes the following contributions:

• Novel Problem. This paper conducts the� rst comprehen-
sive security analysis on an emerging category of mobile
apps that con�gure smartphones to be Bluetooth peripherals.
Our goal is to understand the current security and privacy
practice and present a set of guidelines for secure develop-
ment of mobile app-de�ned Bluetooth peripherals with the
hope to prevent severe security impacts at the early stage.

• New Tool. We design and implement PeriScope to auto-
matically demystify Bluetooth con�gurations in mobile app-
de�ned Bluetooth peripherals by uncovering their link layer
con�gurations via reverse engineering Bluetooth peripheral
apps, and detect their vulnerabilities that are subject to pas-
sive eavesdropping and active man-in-the-middle attacks.

• Empirical Evaluation. Among 2.4 million Android apps,
PeriScope recognized 1,160 Bluetooth peripheral companion
apps, in which it has detected 69.13% apps that are subject
to passive eavesdropping attacks in the broadcast proce-
dure leaking device or personal identi�able information and
around 95% of GATT attributes have been assigned with
weak protections leading to active MITM attacks. In addition,
it has also discovered a severe manufacturer ID abuse with
many app-de�ned Bluetooth peripherals violating the policy
de�ned by Bluetooth SIG of using unassigned manufacture
IDs, manufacturer IDs belonging to others, and a preserved
ID that is disallowed to appear in shipping products.
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2 BACKGROUND
2.1 Bluetooth Low Energy
Bluetooth Low Energy (BLE), initially released within the Bluetooth
4.0 speci�cation, is a special version of the Bluetooth technology.
Compared to Bluetooth Classic, BLE maintains essential Bluetooth
functionality with extremely lower power consumption (e.g., up to
1% of power usages in Bluetooth Classic). To communicate with
connected devices, BLE devices follow the Generic Access Pro�le
(GAP) [41] and make use of the Generic Attribute Pro�le (GATT)
to transfer data between them [29].
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Figure 1: Illustration of GATT Architecture.

Generic Access Pro�le (GAP). The GAP de�nes two commu-
nication mechanisms for BLE devices: broadcasting and connect-
ing [41]. Speci�cally, broadcasting is a one direction communication
in which a BLE device only transfers information to other devices
by constantly broadcasting advertising packets. In addition, a BLE
device can also connect to another device to transfer data in two
directions. In this mechanism, there are two roles, i.e., Peripheral
and Central. In particular, a peripheral device will constantly broad-
cast advertising packets to declare its existence if disconnected, and
a central device will periodically scan nearby advertising packets
to search for the speci�c peripheral. If wishing, it will initiate a
connection request to the peripheral.
GATT. The GATT speci�es how a piece of data is stored in a local
device and accessed by a remote device. In particular, the GATT has
three attributes: service, characteristic, and descriptor, and they are
organized hierarchically (illustrated in Figure 1) where a service can
contain several characteristics, and each characteristic can consist of
several descriptors. Additionally, each attribute is addressable with
a� xed-length universally unique identi�er (UUID), and a piece of
data is stored in a characteristic or a descriptor, both of which are
speci�ed with security permissions to enforce the access control.

The UUID is a 128-bit number that makes each GATT attribute
addressable. There are two types of UUIDs: the standard and the
custom UUIDs. Standard ones are speci�ed by the Bluetooth SIG
for dedicated services and custom ones are created by developers
for their own usages. Notably, a standard UUID is speci�ed in short
(16-bit or 32-bit), and its full length (128-bit) is reconstructed by
concatenating a� xed base (0000-1000-8000-00805F9B34FB) to its
short version. Additionally, custom UUIDs are all 128-bit in length,
and they cannot share the same value with any standard UUID.

GATT permissions specify the security requirement for a remote
device to access a piece of data that is stored in a GATT attribute. In
total, GATT de�nes three permissions [29]: (0) Access permission
that speci�es whether the data stored in an attribute is readable,
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Figure 2: Work�ow of Mobile App De�ned Bluetooth Peripherals.

writable, neither or both, to a remote device; (1) Encryption per-
mission that enforces the data of an attribute to be accessed or
transferred to a remote device through an encrypted channel; and
(2) Authentication permission that protects the data from being
accessed by unauthenticated devices.

Moreover, the data transmission is between a GATT server and a
GATT client. The server manages GATT attributes and responses to
remote requests sent by a client. It is worth noting that GAP roles
(i.e., central and peripheral) are essentially di�erent to GATT roles
(i.e., server and client).

2.2 App-de�ned Bluetooth Peripherals
An app-de�ned Bluetooth peripheral,AdBP , is a BLE-enabled smart-
phone that is con�gured by a mobile app to function as a peripheral.
Speci�cally, it acts as a normal BLE peripheral. In Android, de�ning
a peripheral requires the app to use the system APIs to implement
its application logic and con�gure the security requirements for a
remote device to access its data.
De�ning AnAdBP . To support the above two working modes, the
operating system provides an app with two types of con�gurations :
(0) the con�guration of broadcasting behaviors (for beacons) and (1)
the con�guration of the GATT server (for connectable peripherals).
(A) Broadcasting Con�guration. It is an essential functionality
for a BLE peripheral to broadcast advertising packets. These pack-
ets in an AdBP can be con�gured by its companion Android app
invoking relevant system APIs including the properties of emitting
packets and custom data in these packets.

In particular, Android apps can con�gure three broadcasting prop-
erties: mode, timeout, and the transmission power. Speci�cally, the
mode determines the time interval between two adjacent advertis-
ing packets, the timeout limits the duration of each broadcasting
session, and the transmission power (TxPower) controls the power
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to emit packets. On the other hand, Android apps can also cus-
tomize several data� elds in the advertising packets. First, apps
can customize the� elds for speci�c services including the service
UUID, service data, the manufacturer ID, and manufacturer speci�c
data. Second, apps can also optionally place additional information
about the peripheral in the packets, e.g., device name. Third, apps
also can declare the connectivity property in their packets.
(B) GATT Server Con�guration. A GATT server is required to
be maintained by an app-de�ned Bluetooth peripheral if it supports
the connectable mode since it manages the data transmissions. In
particular, only attributes that have been registered to a GATT
server can be accessed by remote devices. To work properly, all
attributes should be well con�gured, and Android provides di�erent
options to con�gure each attribute based on its unique nature:

• Service: An Android app can con�gure a service as either
a primary or a secondary service. A primary service rep-
resents the main functionality such as the Blood Pressure
service which is de�ned by the SIG [39], while a secondary
service should be included within a primary service to pro-
vide complementary functionality [1].

• Characteristic:A characteristic contains a piece of informa-
tion of a service. For example, Blood Pressure Measurement is
one characteristic of the Blood Pressure service [39]. An An-
droid app can specify both the property and the permission
of a characteristic. Speci�cally, the property de�nes actions
that can be performed by remote devices and the permission
declares security requirements for the data access [33].

• Descriptor:A descriptor is contained within a characteristic
to provide additional information [23]. Unlike characteristics,
descriptors only have permissions allowing con�guration.
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Figure 3: PII Broadcast in Cleartext by Ly� Driver.

The Work�ow of AdBP . Figure 2 illustrates the work�ow of an
AdBP , which contains three procedures:

• (I) Broadcasting and Connection: At the start, an AdBP
will constantly broadcast advertising packets, which contain
device identi�able information (e.g., service UUID and de-
vice name). Meanwhile, a central device keeps scanning for
nearby packets and extracts such identi�able information
from these packets to discover the speci�c peripheral of in-
terest. Next, if the peripheral allows the connection, then the

central may initiate a connection request. The connection
will be established when such a request is accepted.

• (II) Pairing and Bonding: The paring and bonding proce-
dures are optional to create a secure channel for two devices
to transfer data [29]. Speci�cally, these procedures will be
initiated by a central in response to a data access request
error due to insu�cient authentication (due to the peripheral
con�guration). The pairing procedure starts by exchanging
security features between the two devices to negotiate the
pairing protocol, i.e., “Just Works”, “Numeric Comparison”,
“Passkey Entry”, and “Out of Band (OOB)” [31]. After the ex-
change, both devices generate and synchronize a temporary
key to encrypt the communication channel [7]. After the
pairing, the central can start the bonding procedure to let
the paired devices remember each other for subsequent con-
nections. To this end, both devices will negotiate a long term
key (LTK) through the channel encrypted by the temporary
key and store such a LTK locally to� nish the bonding.

• (III) Communication: After the connection is established,
even without pairing and bonding, the central can try to
access a piece of data stored in the peripheral. Since such a
piece of data is stored in a GATT attribute (e.g., character-
istic) on which the GATT server enforces access control. As
such, only access from quali�ed central would be accepted.
Otherwise, a corresponding error message will be responded.
Having the error message, the central may need to initiate
the pairing and bonding procedures to satisfy the declared
security requirements for access (step II).

3 OVERVIEW
In this section we present an overview of PeriScope. We motivate
our design with two real-world examples (§3.1). Based on these
examples, we develop the threat model (§3.2) so we can identify the
attack surface of AdBP and possible adversary objectives. Finally,
de�nes the scope (§3.3) of this study.

3.1 Motivating Examples
As presented in §2.2, an app can customize the data in advertising
packets, which usually store data in cleartext, and con�gure the
permissions on characteristics and descriptors to enforce access
control. Unfortunately, these two capabilities can both result in
vulnerabilities. In the following, we use two real world examples to
illustrate their presence.
PII in Advertising Packets. An AdBP will constantly broadcast
advertising packets if it is disconnected. These packets store data
in cleartext by design. Unfortunately, there are several data�elds
in advertising packets developers can customize, and they may mis-
takenly place sensitive data in any of these� elds. In the following,
we use an industry leading app, Ly� Driver, to illustrate how it
mistakenly broadcasts the personal identi�able information (PII ).

In particular, as shown in Figure 3, we notice this app adds the
pUuid into its advertising packets at line 6. This uuid is generated
from method getUserUuid at line 3, which takes the userId as
input to produce the uuid by concatenating such an input value to
a� xed string 00000123-0123-0123-0123-00000. Next, by tracing
the input value of userId, we can understand that it is a unique ID
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for each driver. As such, the service UUID in advertising packets is
actually the user ID that can be used for user identity recognition
and, even worse, location tracking.
Credentials Leakage From GATT Server. An AdBP that sup-
ports the mode of connectable peripheral has to maintain a GATT
server that enforces access control on GATT attributes to ensure
secure data transmission. Consequently, if such a security mecha-
nism is vulnerably implemented on sensitive and private data, it can
lead to severe privacy leakages. In the following, we use a popular
account unlocking app, which allows users to automatically unlock
the account to log into a desktop or laptop using a mobile phone,
as an example to demonstrate how it exposes user credentials to
attackers without protection in Figure 4.

Speci�cally, we can observe that this app declares itself as a
connectable device at line 2, and invokes the method prepareAnd
AddService at line 5 to con�gure the GATT server right after broad-
casting advertising packets. In the invoked method, this app reads
a device list at line 9, and then iterates such a list to create a char-
acteristic for each device at line 14. When creating a characteristic,
the app speci�es the PERMISSION_READ permission and stores the
decrypted key that can unlock the account in such a device at line
16. Since the PERMISSION_READ has no security requirement, each
central connecting to such a peripheral can read the list of keys used
to unlock user accounts. Therefore, the improper access control in
this peripheral can leak sensitive data, i.e., user credentials.

3.2 Threat Model
Attack Surface. According to the aforementioned real-world ex-
amples and the nature of an AdBP , an attack can succeed during
procedures (I) Broadcasting and Connections, or (III) Communica-
tion. In the latter case, the attack must go through all work�ow
procedures of an AdBP . Therefore, this study de�nes the attack
surface of an AdBP in respect of its work�ow.

(I) Broadcasting and Connections. When disconnected, an
AdBP would broadcast advertising packets to declare its existence,
and the data carried in these packets are in cleartext by design.
Therefore, if developers mistakenly place sensitive data in such
packets, a nearby attacker can sni� and interpret such sensitive
information and conduct consequent attacks. Additionally, an at-
tacker can also establish a connection to the victim device.

(II) Pairing and Bonding. In this procedure, attackers launch
the downgrade attack [51] that forces a pair of devices to use inse-
cure pairing and bonding protocol (i.e., “Just Works”). In this way,
attackers can bypass the encryption protection assigned to a GATT
attribute and access its stored data in the next procedure.

(III) Communication. Since the connection procedure can be
done without victim involvement and the procedure of pairing and
bonding is triggered when there is a request without su�cient
permission, an attacker can access a piece of data stored in an
unprotected or ill-protected GATT attribute without victim’s notice.
Speci�cally, when inappropriate permissions are placed on a GATT
attribute storing sensitive data, attackers can secretly connect to
the victim device and steal that sensitive data to� nish the attack.
Adversarial Capabilities and Objectives. In our threat model,
an attacker is equipped with BLE-enabled devices that can passively
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Figure 4: Credentials Leakage in an Account Locking App.

sni� BLE packets and actively establish connections with BLE pe-
ripherals. Additionally, the attacker is able to reverse engineer mo-
bile apps to retrieve the UUIDs that are placed in advertising packets
or used to label GATT attributes. Also, the attacker is capable of
uncovering the permissions assigned on each GATT characteristic
and descriptor. On the other hand, the primary objective of an at-
tacker is to steal sensitive data either from advertising packets or
GATT attributes, and then conduct speci�c attacks based on the
type of sensitive data, such as using PII for movement tracking.

3.3 Scope
We focus on unveiling security and privacy practices in AdBPs that
are de�ned during Bluetooth peripheral creation (i.e., con�guration
of broadcasting and GATT server). While there are other types of
vulnerabilities of Bluetooth peripherals residing in the link or phys-
ical layer (e.g., eavesdropping [22, 45]), since related con�gurations
in these two layers are hidden to the apps and handled by the mobile
operating system, which is assumed to not be compromised, such
vulnerabilities are excluded from this work. Additionally, while the
proposed approach scales to apps working in other mobile operat-
ing systems, we focus on Android AdBP as the� rst step towards
understanding security and privacy in this emerging category of de-
vices. In particular, we focus on the peripheral behaviors de�ned by
an app using systemAPIs at the Java bytecode level, and such behav-
iors implemented with custom APIs or other techniques (e.g., native
libraries and JavaScript in WebView) are out of the scope. Moreover,
the analysis is based on the BLE 4.G speci�cations and above.

3.4 PeriScope Overview
Based on the presented motivating examples (§3.1), threat model
(§3.2), and the scope (§3.3), PeriScope needs to: (I) detect the com-
panion app of an AdBP , (II) uncover the components in the advertis-
ing packet and (III) reveal the con�guration of the GATT server of
this AdBP , and (IV)� nally identify vulnerable security and privacy
practices. Speci�cally,
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Figure 5: The Work�ow of PeriScope.

(I) Precise AdBP Companion App Recognition: Since there
does not exist a central public repository of this speci�c category of
apps and there is also no explicit label assigned to them by public
app markets (e.g., Google Play), we perform the� rst attempt to
recognize AdBP companion apps in the literature. PeriScope has to
propose a new solution to precisely recognize them.

(II) Accurate Programming Value Resolution: After recog-
nizing a companion app of an AdBP , PeriScope next has to uncover
the components of its advertising packet and reveal its GATT server
con�guration. While these two tasks can be accomplished by re-
solving the input values to corresponding system APIs, these values
may not always be de�ned statically (as shown in Figure 3. As such,
it demands an algorithm to resolve such values that are generated
through complicated procedures.

(III) E�ective Vulnerability Identi�cation: PeriScope �nally
has to identify vulnerabilities from the results obtained in previous
tasks. Unfortunately, given the di�erent nature of components in
an advertising packet and attributes in a GATT server, it is unre-
alistic to use a uni�ed rule to identify vulnerabilities in all of them.
Therefore, PeriScope has to design di�erent strategies to identify
vulnerabilities speci�c to each of them.

4 DESIGN OF PERISCOPE
This section presents the detailed design of PeriScope to accom-
plish the above listed tasks. As shown in Figure 5, PeriScope �rst
leverages a unique invocation feature of system APIs to recognize
AdBP companion mobile apps (§4.1). Next, it performs an inter-
procedural program analysis to resolve values an app used to de�ne
an AdBP to uncover its advertising packets (§4.2) and reveal GATT
server con�guration (§4.3). Finally, PeriScope designs a series of se-
curity rules to identify vulnerabilities from di�erent attack vectors
in advertising packets and GATT attributes (§4.4).

4.1 Recognizing An AdBP Companion App
PeriScope starts from detecting whether an app is able to turn a
phone into a Bluetooth peripheral. Considering it requires invoking
relevant system APIs and an app should have the permissions to
use them, PeriScope �rst checks the permissions requested by an
app and then examines the presence of relevant system APIs.
Checking Bluetooth Permissions. An app of AdBP should re-
quest for the Bluetooth related permissions, e.g., BLUETOOTH and
BLUETOOTH_ADMIN. Since such requests have to be declared by an
app in itsManifest �le, its capability of using Bluetooth can be under-
stood by inspecting such a� le. As such, PeriScope uses apktool [4],

a tool to reverse engineer APK� les, to decompile an app to extract
itsManifest �le and check the existence of the required permissions.
Detecting Peripheral Functionality. The previous step excludes
apps that cannot use Bluetooth, which is insu�cient to recognize
AdBP companion apps because an app may use Bluetooth to de�ne
a central device. As such, this step further excludes apps that can-
not perform the unique and essential functionality of a Bluetooth
peripheral, i.e., broadcasting advertising packets. To broadcast, an
app has to invoke corresponding APIs. While such APIs might
be custom APIs, third-party APIs, and system APIs, without loss
of generality in this large-scale study, PeriScope only focuses on
system APIs de�ned by Android (e.g., startAdvertising). Accord-
ingly, PeriScope depends on dex2jar [18] to detect the presence of
these APIs to�nd AdBP companion apps

4.2 Uncovering Advertising Packets
Having detected whether an app is capable of de�ning Bluetooth
peripherals, the next task for PeriScope is to uncover the custom
data that have been placed in advertising packets. While it seems
plausible to uncover such data by dynamically running the app and
sni�ng its advertising packets in the air, the unique requirement
for each speci�c app (e.g., user registration and navigation to a
speci�c interface) to trigger such functionalitymakes it hard to scale.
For the sake of scalability, PeriScope depends on static analysis to
uncover the custom data in advertising packets by resolving the
input value to the dedicated system APIs that are used to customize
corresponding data�elds.
Target System APIs. Android provides a variety of system APIs
to customize data carried in advertising packets. Speci�cally, APIs
that customize service UUID, service data, manufacturer ID, man-
ufacturer data, and device name include addServiceData, add
ServiceUuid, addManufacturerData, and setIncludeDeviceNam
e (the full list is shown in Table 6 in Appendix A).
Resolving Customized Data. PeriScope uncovers the customized
data in advertising packets by resolving the input value to the afore-
mentioned system APIs. Unfortunately, not all input values could
be resolved in the way that is as straightforward as the value in
the running example (shown in line 2 in Figure 4) which can be
resolved directly at place of usage. These values also could be gen-
erated in a similar way as the service UUID generation processes in
Ly� Driver (§3.1) which has gone through a series of computations.
Therefore, PeriScope has to capture all computations associated to
an input value and then repeat these procedures to resolve its value.
Fortunately, it can rely on similar techniques we have developed in
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our previous works LeakScope [54] and InputScope [53] instead of
developing from scratch.

Speci�cally, PeriScope �rst leverages FlowDroid [6] and EdgeM-
iner [10] to construct the inter-procedural control-�ow graph (ICFG)
that contains both explicit (i.e., direct-call) and implicit (i.e., call-
backs of Android components) edges. Upon the ICFG, it then builds
an inter-procedural data-�ow graph (IDDG) where each node repre-
sents an instruction and each edge is a control-�ow transfer. Next,
by backward traversing the IDDG, PeriScope traces every input
to target APIs from where it is used to where it is initialized, and
records associated computations of each value. According to the
recorded procedures, for each input value, PeriScope performs the
same computations in the same order (in reverse to the recording or-
der) to resolve each input value.While it can resolve concrete values
of those static one, such as the static service UUID, manufacturer
ID, and boolean value indicating whether to include device name in
advertising packets, it may not produce concrete results if the value
cannot be resolved without real execution (e.g., getDeviceId). In
the latter case, PeriScope collects all related text information in
the corresponding data-�ow path such as the name of a variable, a
method, or a class, for the convenience of further analysis in §4.4.

4.3 Revealing GATT Server Con�guration
If an app-de�ned peripheral works as a connectable peripheral,
it has to maintain a GATT server, which can be con�gured us-
ing relevant system APIs. For example, developers can invoke the
BluetoothGattDescriptorAPI to initiate an instance of a descrip-
tor with speci�ed UUID and permissions. In addition, such an in-
stance can use setValue to store or update its data. In particular,
all APIs like this that initiates an instance of an attribute or places
values in an attribute are of our interest because they could be the
(0) the UUID of an attribute, (1) its permissions, and (2) its stored
values (the full list is presented in Table 7 in Appendix A).
Revealing Con�gurations. To reveal con�gurations of a GATT
server, PeriScope has to resolve the input values to the con�gura-
tion APIs. Similar to resolving input values in APIs that customize
data in advertising packets, PeriScope applies the same algorithm
but focuses on di�erent APIs. Additionally, since the GATT server
may contain several GATT attributes that are labelled by UUIDs
and they are constructed hierarchically, to comprehensively reveal
the server con�guration, PeriScope also reconstructs the hierarchy
from the data dependencies among those attributes. That is, an
instance of a GATT service can use addCharacteristic to add
an instance of a GATT characteristic, and an instance of a GATT
characteristic can leverage on addDescriptor to add an instance
of a GATT descriptor. Therefore, by traversing the IDDG, PeriScope
can identify such dependencies and reconstruct the hierarchy.

4.4 Security and Privacy Analysis
Once both the advertising and GATT server con�gurations have
been uncovered, the� nal step of PeriScope is to conduct security
and privacy analysis to identify related vulnerabilities. Considering
di�erent data� elds may result in di�erent vulnerabilities, either
passive eavesdropping or active MITM, PeriScope designs a series
of policies for their detection.

Passive Eavesdropping Vulnerability Detection. Since a BLE
peripheral broadcasts advertising packets to all nearby devices, the
passive eavesdropping vulnerability focuses on whether such pack-
ets contain sensitive data. Due to the di�erent nature of the data
stored in each customizable� eld, their vulnerabilities are deter-
mined by di�erent policies.

• Identi�able Service UUID: The service UUID, can be a
static value (i.e., hardcoded value), a dynamic value, or a hy-
brid one. Unfortunately, the static UUIDs could be used for
device� ngerprinting [11, 55] (i.e., device identi�able infor-
mation), and the hybrid one could lead to user tracking (§3.1),
i.e., personal identi�able information. Therefore, PeriScope
identi�es these two types of identi�able information by in-
specting the generation of each UUID, which is achievable
in the process of advertising value resolution in §4.2.

• Identi�able Device Name: This� eld carries the name of
a smartphone (i.e., Alice’s Pixel) by default if not been spec-
i�ed with a customized name. As such, it could be a PII
resulting in identity tracking. To understand which value is
carried in this data�eld, PeriScope depends on the system
API (i.e., setName) which is used to specify a customized
name. Therefore, PeriScope identi�es this vulnerability by
inspecting whether an app has declared to include its device
name in advertising packets without invoking this API.

• Sensitive Data in Speci�c Fields: The two speci�c data
�elds, i.e., advertising data and manufacturer speci�c data,
are highly customized by each companion app for service
purposes, which makes them possible to carry sensitive data.
Since sensitive data may come from system APIs or app
custom APIs which lack documentation, without loss of
generality, PeriScope identi�es this vulnerability if a piece
of data in such� elds are from sensitive system APIs (e.g.,
Location.getLatitude).

In addition, we also analyze the usage of the manufacturer ID
assigned to each AdBP . This is uniquely assigned to manufacturers
by the SIG and publicly available. While its security risk is relatively
low since there are no known attacks on it in the literature its usages
have to comply with the SIG policy which has has not been well
studied to date.
Active MITM Vulnerability Detection. The active MITM vul-
nerability can be detected by resolving the permissions assigned to
each GATT attribute. Both access permission and encryption per-
mission are vulnerable to the active MITM attack. In Android, it as-
signs the access permission to an attribute using PERMISSION_READ
or PERMISSION_WRITE and the encryption permission via assigning
PERMISSION_WRITE_ENCRYPTED or PERMISSION_READ_ENCRYPTED.
Therefore, PeriScope uses these four Android permissions to detect
the corresponding active MITM vulnerability.

In addition, to further evaluate the impact of activeMITM attacks,
it requires to understand the functionality of each weak protected
GATT attribute, and PeriScope uses two strategies for this purpose.
First, PeriScope leverages the UUID to understand the functional-
ity. Since a GATT attribute is assigned with either a standard or a
custom UUID and its usages of standard UUIDs are well de�ned,
the functionally of an attribute labeled by a standard one can be
understood by checking the documentation of such a UUID. Second,
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with respect to the attributes labeled by custom UUIDs, since these
UUIDs are rarely documented, PeriScope intends to depend on the
data generation to infer the functionality of these attributes. While
it had been studied in previous works to infer the meaning of a
data structure from the code through applying natural language
processing (NLP) techniques on the semantics-rich program ele-
ments such as the name of variables, constants, and methods (i.e.,
ClueFinder [28]), the fundamental limitation of such approaches
is the incapability of handling code obfuscation or if there is lim-
ited semantic information, which have been observed prevalently
in peripheral apps. Therefore, PeriScope partially depends on the
system APIs (i.e., getDeviceId) since they are rarely obfuscated.
Moreover, with respect to the data generated from custom methods,
PeriScope requires human experts involvement.

5 EVALUATION RESULTS
5.1 Evaluation Setup
AppCollection.The dataset is built atop the apps that are collected
from AndroZoo [3] by the end of September 2021. While there are
more than 10million apps available in AndroZoo, many of them are
duplicated and outdated. To� lter such duplication, we inspected
the metadata of these apps and found 4 million unique apps based
on their package name. In addition, after cross-checking them with
the Google Play, we� nally found 2.4 million available apps.
Environment Setup. This study has two parts. First, we use a
server which is quipped with the Intel Xeon E5-2695 CPU with 256
GB memory running Ubuntu 16.04 to collect apps from AndroZoo.
Second, the program analysis is conducted on another server that
is equipped with the AMD EPYC 7251 CPU with 128 GB memory
running Ubuntu 18.04.

Item Value
App De�ned Bluetooth Peripherals 1,160
Google Play Categories 28

Advertising Packets Customization

Service UUID 802
Service Data 228
Manufacturer ID & Data 501
Device Name 650
Connectivity 662

GATT Servier Con�guration

Service 786
Characteristic 1,266
Descriptor 486

Table 1: Overall Statistics of Experimental Results.

5.2 Overall Results
We present the overall results of our analysis in Table 1. In total,
PeriScope has identi�ed 1,160 AdBP companion apps. Speci�cally,
there are 802 apps that broadcast static or hybrid service UUIDs, 228
apps that also place service Data in advertising packets, 501 apps
that contain manufacturer IDs and manufacturer speci�c data in
their advertising packets, and 650 apps that broadcast their device
names. Moreover, it has also identi�ed 662 apps that allow other

devices to connect. In addition, the GATT servers of these apps
contain 786 services, 1,266 characteristics, and 486 descriptors.

5.3 Ecosystem Analysis
Based on our best knowledge, this paper is the� rst study to sys-
tematically analyze the mobile app-de�ned Bluetooth peripherals
at scale. As such, we would like to present a measurement study
on the current ecosystem. To this end, we need to combine the
metadata of the corresponding apps and the results from program
analysis. At a high level, our ecosystem analysis involves the app
distribution and the involved manufacturers.
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Figure 6: Distribution of the Apps that de�ne BLE peripherals.

App Distribution. First, we use the metadata of apps to under-
stand their distribution based on the category provided by Google
Play. As presented in Table 1, 1,160 apps in our dataset come from
28 categories, and Figure 6 shows their distributions according
to the number of apps in a category, which highlights categories
accounting for more than 2.5% and puts the rest in “others”. In
particular, the top 5 categories are “Tools” (193), “Lifestyle” (104),
“Education” (101), “Health” (99), and “Business” (86). Additionally,
there are another two categories “Productivity” (76) and “Travel”
(71) that contain more than 5% apps. In addition to the categories
shown in Figure 6, there are 8 categories that contain less than 1%
apps, such as “Shopping”, “Dating”, and “Parenting”.

Manufacturers

Ericsson Nokia Intel Qualcomm
IBM Microsoft ST Micro. Syntronix
MediaTek Marvell Apple Avago
Nordic MiCommand Band XI Zomm
Belkin Quuppa Typo Pro. Swipp
Samsung Nike Alpwise ARP
Quuppa Oy Google Comodule GMBH. Unikey
Disney WiSilica Trividia Typo
Enlighted LINKIO SAS BlueUp Xiaomi
Huawei Currant Bestechnic Powercast
Grundfos MEGA-F LEMONJOY Withings
Frogblue MIWA LOCK Engineered Audio OnAsset
Minew SmartAction Intellithings Noodle
Wernher von Braun Center for ASdvanced Research Kroger
Automotive Data Solutions Inc Seitec Elektronik LG
Bruel & Kjaer Sound & Vibration GL Solutions K.K.

Table 2: List of Manufacturer Associated with Indenti�ed IDs.

Participated Manufacturer. A manufacturer can be identi�ed by
its manufacturer ID, which is a unique number assigned by the
Bluetooth SIG. To understand how many manufacturers have been

Session 5A: Cyber-physical and IOT Security #2  ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

528



involved in this ecosystem, we� rst convert the manufacturer ID
uncovered from an app to the company to which such an ID belongs,
according to the public database provided by Bluetooth SIG [32].
In total, we have identi�ed 61 manufacturers (shown in Table 2).

Unfortunately, we also noticed a severe manufacturer ID abuse
problem. A manufacturer ID is uniquely assigned to a manufacturer
by the Bluetooth SIG, manufacturers can temporarily use the pre-
served ID (i.e., “65535”) for internal testing when their requested
IDs have not been assigned. In particular, the preserved ID is also
disallowed to appear in shipping products [32]. By comparing the
developer information of an app and the company associated with
its used ID, we have identi�ed three types of manufacturer ID
abuses: (0) using manufacturer ID assigned to other companies, (1)
using an unassigned ID, and (2) using the preserved one for internal
usages in the shipping product.

Speci�cally, our analysis has revealed that 351 out of 501 apps
that include manufacturer ID in their advertising packets actually
abuse such ID usages. As shown in Table 3, in total, we have iden-
ti�ed 98 unique manufacturer ID from 501 apps that place this ID
in their advertising packets. In particular, we only identi�ed 28
apps that are developed by ID compliant manufacturers (20 in total)
such as Samsung, Huawei, and Xiaomi use their own manufacturer
ID. In addition, we also discovered 129 apps use the ID of Apple
(i.e., “76”) in order to comply with the iBeacon protocol [5]. Finally,
(0) there are 91 apps use IDs that have not been assigned to any
manufacturer, (1) 243 apps that are developed by the groups that
are inconsistent to the companies to which their manufacturer ID
belongs, and (2) 17 apps that use the preserved ID for temporary
testing in shipping products.

5.4 Security Analysis
5.4.1 Passive Eavesdropping Vulnerability Analysis. According to
the detection policies in §4.4, there are four data� elds in the ad-
vertising packets will be evaluated to understand the impacts of
the passive eavesdropping vulnerability, i.e., service UUID, service
data, manufacturer speci�c data� elds, and device name.
(I) Identi�able Service UUID. This study has identi�ed that a
service UUID can be a piece of device identi�able information or
personal identi�able information. Speci�cally, in respect of being a
piece of device identi�able information, in total, we have identi�ed
799 apps that broadcast static service UUIDs. Based on previous
studies [11, 55], these apps are vulnerable to device�ngerprinting
attacks. On the other hand, there are 3 apps that broadcast per-
sonal identi�able service UUIDs, all of which have been veri�ed
via manually code review. In particular, an earthquake rescue app
and a driver education app commit the same mistake to that in Ly�
Driver (in §3.1) that generate their service UUID by concatenating
a� xed string value to the user ID.
(II) Identi�able Device Name. There are 537 apps that put the
custom phone name in device name� eld in advertising packets.
These device names can be used as personal identi�able information
for user identi�cation and tracking.

5.4.2 Active MITM Vulnerability Analysis. As shown in Table 4,
we summarize the type of service and the security permissions
(i.e., read and write) that assigned to characteristics and descriptors.

Item Value
Peripherals w/ Manufacturer ID 501
Unique Manufacturer ID 98

Legitimate Usage

Compliant ID Usage 28
Protocol Usage 129

Abuse Usage

Incompliant ID Usage 243
Unassigned Manufacturer ID 91
Internal Manufacturer ID 17

Table 3: Experimental Results of Manufacturer ID Abuse.

Speci�cally, most of services (98.73%) are declared as primary ser-
vice. Surprisingly, we found that the majority of both characteristics
and descriptors is con�gured with access permission. In particular,
94.44% characteristics and 96.59% descriptors are only speci�ed
with read permission without further security requirement, and
94.78% characteristics along with 94.71% descriptors declare the
lowest security level of the write permission. With respect to these
vulnerable attributes, we further investigate them based on their
functionality to identify whether they contain sensitive data.

We� rst inspect whether sensitive data generated from system
APIs have been contained in attributes with access or encryption
permission, and we have not identi�ed a single case. Therefore, we
next need to manually analyze these apps to identify whether their
not well-protected attributes contain any sensitive data. While we
wish to con�rm all improper access controls on sensitive data for
all apps, this turns out challenging because of the missing docu-
mentation, the limited information available in the app, and limited
man power. Instead, we primarily focus on the apps belonging to
the top 5 categories and present the details of the top 5 apps in each
of these categories in Table 5 with our best understanding.

Access Permission

Attribute Total P S Ac. En. Au.
Service 786 776 10 — — —

Characteristic 1,266

R 990 — — 935 28 27
W 760 — — 721 19 20

Descriptor 486

R 440 — — 425 12 3
W 473 — — 448 12 13

Table 4: Evaluation of GATT Attribute Con�gurations: P for pri-
mary, S for secondary, R for read,W for write, Ac. for access, En. for
encryption, and Au. for authentication.

VulnerableAttributesWith StandardUUIDs.Our analysis have
discovered 11 service, 30 characteristic, and 6 descriptor that are
labelled by standard UUIDs. After reviewing their functionality, we
have identi�ed that many of them contain insensitive data, such
as current time (the full list of the identi�ed standard UUIDs are
presented in Table 8 in Appendix A). We have identi�ed 3 stan-
dard services and their associated 6 characteristics are privacy
sensitive. Speci�cally, these sensitive services and characteristics
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include (8) Running Speed and Cadence (RSC) (0x1814) service that
contains two characteristics: RSC Measurement (0x2A53) and RSC
Feature (0x2A54), (88) Heart Rate (0x180D) service that contains
Heart Rate Measurement (0x2A7A), and (888) Cycling Speed and Ca-
dence (CSC) (0x1816) service that contains three characteristics:
CSC Measurement (0x2A5B), CSC Feature (0x2A5C), and Sensor Lo-
cation (0x2A5D). In addition, these sensitive attributes belong to
two apps in the “Health” category. Speci�cally, as shown in Table 5,
one app contains two services: the RSC and Heart Rate, which al-
lows any connected centrals to the running speed and hear rate
of the user, and another app provides the CSC service allowing a
connected device to access the cycling data, which includes the
wheel and crank revolution.
Vulnerable Attributes With Custom UUIDs. Unlike standard
UUIDs, customUUIDs are rarely documented. As such, wemanually
review the code to understand the service and functionality these
attributes provide. As shown in Table 5, there are 7 apps that put
identi�ers in a vulnerable characteristic that is subject to device and
user identity recognition, 7 apps that store app speci�c commands
that should be well protected as business secrets, 7 apps can leak a
variety types of private information (i.e., communication messages,
personal preferences,� tness data, email address, and WIFI ssid and
password), and the rest 4 apps could leak the credentials related to
their safety. Speci�cally, while there are overlaps, apps from di�er-
ent categories manage di�erent types of data. In particular, apps
from the category of “tools” could store digital keys to open doors
or unlock accounts, education apps would contain the digital iden-
ti�ers for class attendance check-in, apps monitoring health and
�tness record related private data, and apps from the rest two cate-
gories manage their application speci�c data such as con�guration
metadata and private commands to retrieve desired data.

6 DISCUSSION
6.1 The Good, the Bad, and the Ugly
Mobile operating systems (e.g., Android) provide a number of sys-
tem APIs for an AdBP companion app to de�ne a Bluetooth pe-
ripheral� exibly. The good aspect of this practice is that mobile
operating systems take over the con�guration of the link layer
information in the advertising packets including the automatic ro-
tation of MAC address, which is usually a� xed value in� rmware
de�ned Bluetooth peripherals leading to tracking vulnerabilities.

Unfortunately, it also impedes the secure development for mobile
operating systems to handle some critical security enforcement pro-
cesses entirely (e.g., negotiating the pairing and bonding policy) in
the link layer.While this implementation may ease the development
e�ort, AdBP companion apps cannot enforce secure pairing policies
and expose themselves to the MITM or downgrade attack [51] if
forcing the “JustWorks” pairing policy by connecting devices. More-
over, it may also let developers entirely neglect the potential risks
resulting from such processes. In this study, it has been identi�ed
that around 95% pieces of data stored in GATT attributes are subject
to the active MITM attack, some of which have been found leaking
sensitive data including but not limited to personal health data,
digital identi�ers of users, and even digital keys to unlock doors.

On the other hand, while turning mobile phones into Bluetooth
peripherals can provide a variety of services, developers may need a

U. Type Opr. Perm.

Cat. App Name St. Cu. R W No. En. Au. Sensitive Data

To
ol
s

T1 #     # # Door unlock key
T2 #     # # Door unlock key
T3 #     # # Device control commands
T4 #   #  # # WIFI SSID and password
T5 #   #  # # User accounts unlock keys

Ed
uc
at
io
n E1 #   #  # # User check-in ID

E2 #   #  # # User check-in ID
E3 #   #  # # User check-in ID
E4 #   #  # # Personal preferences
E5 #   #  # # Personal preferences

Li
fe
st
yl
e L1 #     # # Device control commands

L2 #     # # Vehicle diagnostics commands
L3 #     # # Vehicle diagnostics commands
L4 #     # # Vehicle diagnostics commands
L5 #     # # Vehicle diagnostics commands

H
ea
lth

Aarogya Setu #   #  # # Contact tracing User ID
H2 #   #  # # Communication Tokens
H3 #   #  # # Device control Commands
H4  #  #  # # Fitness data
H5  #  #  # # Fitness data

Bu
si
ne
ss

B1 #   #  # # User ID
B2 #   #  # # IoT device ID
B3 #   #  # # User ID
B4 #   #  # # Con�guration metadata
B5 #   #  # # Private messages

Table 5: Evaluation of Improper Access Control of Top App-
De�ned Bluetooth Peripherals: Cat. for category, U. Type ofr UUID
type, St. for standard, Cu. for custom, Opr. for operation, R for read,
W for write, Perm. for access permission, No. for no protection, En.
for encryption protection, and Au. for authentication protection.

double-thought on whether it is necessary for this implementation.
In particular, an arbitrary usage of such a functionality may inter-
fere the normal functionality of other apps since only one app is
allowed to function at a time. Moreover, a large number of develop-
ers have been identi�ed to violate the manufacturer ID usage policy.

6.2 Limitations and Future Works
Though PeriScope has identi�ed a great number of vulnerabilities
in app-de�ned Bluetooth peripherals, it still has limitations that
require further improvements. First, its program analysis focuses
on system APIs at the Java bytecode level. Thus, it may miss the pe-
ripherals that are de�ned using other techniques such as JavaScripts
in WebViews, which might raise false negatives while we have not
encountered such cases. Therefore, one future work is to extend the
ability to cover additional implementations using other sets of APIs.
Second, while PeriScope can automatically identify many types of
sensitive data such as static UUIDs and the custom name of the
phone, it still requires manual e�orts to identify certain cases such
as recognizing the types of data that are placed in GATT character-
istics and descriptors. As such, another future work is to explore
the feasibility to use machine learning expertise to automatically
recognize the functionality of a custom UUID.

6.3 Ethics and Responsible Disclosure
We take ethics seriously and only launch such attacks on our own
devices for the proof of concept prove purposes and never intend
to exploit any vulnerability on other users’ devices.
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Responsible Disclosure. We immediately contacted developers
of the vulnerable apps according to their contact information pro-
vided in Google Play. At the time of this writing, we have received
con�rmation and bug bounty from Lyft. We will keep in touch with
developers and coordinate with them to� x our identi�ed vulnera-
bilities. Note that we have also anonymized vulnerable apps if they
have not been patched yet.

6.4 Guidelines of Secure AdBP Development
This study is motivated by a wish to identify the potential vulnera-
bilities and prevent associated severe security and privacy impacts
in the emerging category of AdBP applications at their early stage.
In order to improve the security of these applications, we propose
a set of guidelines for secure AdBP development.
Excluding Identi�able Information.This study has identi�ed a
large number of AdBP companion apps carrying either device or
personal identi�able information, or both. In any case, it has been
demonstrated to result in privacy leakages. In fact,� elds in advertis-
ing packets containing such sensitive identi�able information are
entirely customized by developers. Therefore, one suggestion for
AdBP secure development is to exclude any identi�able information
in advertising packets, especially being in cleartext.
Assigning Appropriate Permissions.Another common mistake
made in the process of development that is identi�ed in this empir-
ical study is that the vast majority of GATT attributes have been
assigned no protection with a small portion of the remaining at-
tributes being assigned with encryption permission. Unfortunately,
either of these two protection exposes pieces of sensitive data (if
they were) stored in an attribute to attackers. As such, another
guideline in secure AdBP development is to always assign the high-
est level of security permission (i.e., authentication permission in
Android) to GATT attributes that might store sensitive pieces of
data. Further, developers should be careful when assigning read
and write permissions to attributes, as these may not always be
necessary for the required functionality.
Enforcing Secure Pairing Policies. While it eases the develop-
ment of an AdBP that the mobile operating system handles the
pairing and bonding procedure including the exchange of I/O infor-
mation to negotiate paring protocol, prior work has demonstrated
that this mode is subject to the downgrade attacks [51]. This attack
not only shows the ine�ectiveness of encryption permission in
certain circumstances but also indicates an additional requirement
for secure development. That is, enforcing secure pairing policy
before any access to any GATT attribute, if at least one attribute
might contain sensitive information.

7 RELATEDWORK
BLE and IoT Security. There has been a large body of works that
analyze BLE vulnerabilities in IoT devices. Some of them focus on
vulnerabilities in the protocol, such as leaking credentials in the
pairing procedure [16] and unencrypted channels [50], eavesdrop-
ping vulnerability in the passkey pairing protocol in both BLE 4.0
and 4.1 [30], bruce-force attacks on the long term key [49], reusable
passkey to break the Passkey Entry paring procedure [35, 37], en-
forceable insecure pairingmethods [51], and the consequent privacy

violations [12, 20] . In addition, some other works also focus on
vulnerabilities in BLE-enabled IoT devices with conclusions that
most wearable devices are subject to privacy disclosure [15], IoT
devices are subject to the miscon�guration of privileges [21, 24, 45],
unchanged MAC addresses [9, 17, 45], and� ngerprintable static
UUIDs [11, 45, 55]. In addition, many e�orts also focus on other
attack surfaces may also compromise Bluetooth in smartphones,
such as AT commands [25, 40], reconnecting between two paired
devices [47], and interactions between OS [48] and co-located
apps [36]. Unlike works analyzing security in BLE protocols and IoT
devices, our study focuses on the security and privacy in app-de�ne
Bluetooth peripherals.
MobileAppsAnalysis.There is a large body ofworks that analyze
mobile apps to identify vulnerabilities using static or dynamic anal-
ysis. For example, TaintDroid [19] uses taint analysis dynamically
to identify user privacy data leakages. With respect to the static
analysis, Flowdroid [6] and Amandroid [44] are designed to track
security-related data� ows to identify data leakage, WARDroid [27]
and Extractocol [14] target at network relevant data� ows to identify
related issues, and PlayDrone [43] is capable of extracting static se-
cret keys to analyze vulnerabilities in cloud-based services. Comple-
mentary to these works, we use static analysis to uncover link layer
con�gurations of a Bluetooth peripheral de�ned by mobile apps.
Contact Tracing Analysis. Contact tracing apps can turn a smart-
phone into a Bluetooth peripheral, and there are several works [26,
34, 38, 46, 52] that present empirical studies inspecting the privacy
issues in these apps. Additionally, some e�orts also provide in-depth
studies on speci�c apps. For instance, Cho et al. [13] focus on Trace-
Together and Veale [42] targets the NHS COVID-19 App. Compared
to previous works that primarily analyze privacy problems in a
relatively small set of apps, our study focuses on the security and
privacy practice in app-de�ned Bluetooth peripherals at scale.

8 CONCLUSION
This paper presents PeriScope, an automated tool that unveils the
security and privacy vulnerabilities at the link layer of mobile app-
de�ned Bluetooth peripherals. Speci�cally, it introduces a series
of automated program analysis techniques in precise recognition
of companion apps, accurate program value resolution to uncover
their link layer functionality implementations, and e�ective vul-
nerability identi�cation. PeriScope has recognized 1,160 Bluetooth
peripheral apps from Google Play, and identi�ed 69.13% of them
that broadcast device or personal identi�able information in cleart-
ext and 95% pieces of data stored in all recognized apps that can be
accessed by any connected devices without authentication, which
leads to sensitive data leakages. In addition, it also discovered a
severe manufacturer ID abuse in the current ecosystem violating
the associated usage policy. Finally, a set of guidelines for secure
app-de�ned Bluetooth peripheral development is provided with
the hope of preventing the potential severe security impacts at the
early stage.
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A APPENDIX

Class Name Method Name Parameters

setAdvertiseMode int advertiseMode

AdvertiseSettings setConnectable boolean connectable

.Builder setTimeout int timeoutMillis

setTxPowerLevel int txPowerLevel

addManufacturerData int manufacturerId,
byte[] manufacturerSpeci�cData

addServiceData ParcelUuid serviceDataUuid,
AdvertiseData byte[] serviceData

.Builder addServiceUuid ParcelUuid serviceUuid

setIncludeDeviceName boolean includeDeviceName

setIncludeTxPowerLevel boolean includeTxPowerLevel

Table 6: List of System APIs to Con�gure BLE Advertising

Class Name Method Name Parameters

BluetoothGattServer addService BluetoothGattService service

BluetoothGattService
<init> UUID uuid, int serviceType

addCharacteristic BluetoothGattCharacteristic ch

addService BluetoothGattService service

BluetoothGattCharacteristic

<init> UUID uuid, int properties,
int permissions

addDescriptor BluetoothGattDescriptor desc

setValue String value

setValue int value, int formatType,
int o�set

setValue byte[] value

setValue int mantissa, int exponent,
int formatType, int o�set

BluetoothGattDescriptor <init> UUID uuid, int permissions

setValue byte[] value

Table 7: List of System APIs to Con�gure GATT Server

A.1 Android System APIs Con�guring AdBP
Android provides a set of systemAPIs for developers to con�gure an
AdBP . In particular, anAdBP and other types of BLE peripherals can

work in two modes to provide services. In this regard, as shown in
Table 6, Android systemAPIs allow Android developers to con�gure
(0) broadcasting behaviors (for beacons) and (1) the GATT server
(for connectable peripherals). In addition, as mentioned in §4.3, an
AdBP also uses system APIs to construct the hierarchy. The full list
of these APIs are shown in Table 7.

Attri. UUID Semantic

se
rv
ic
e
U
U
ID

00001802-0000-1000-8000-00805F9B34FB Immediate Alert
00001805-0000-1000-8000-00805F9B34FB Current Time Service
0000180A-0000-1000-8000-00805F9B34FB Device Information
0000180F-0000-1000-8000-00805F9B34FB Battery Service
00001814-0000-1000-8000-00805F9B34FB Running Speed and Cadence
0000180D-0000-1000-8000-00805F9B34FB Heart Rate
00001800-0000-1000-8000-00805F9B34FB Generic Access
00001812-0000-1000-8000-00805F9B34FB Human Interface Device
00001816-0000-1000-8000-00805F9B34FB Cycling Speed and Cadence
00001818-0000-1000-8000-00805F9B34FB Cycling Power
00001826-0000-1000-8000-00805F9B34FB Fitness Machine

ch
ar
ac
te
ris

tic
U
U
ID

00002A28-0000-1000-8000-00805F9B34FB Software Revision String
00002A29-0000-1000-8000-00805F9B34FB Manufacturer Name String
00002A2B-0000-1000-8000-00805F9B34FB Current Time
00002A0F-0000-1000-8000-00805F9B34FB Local Time Information
00002A24-0000-1000-8000-00805F9B34FB Model Number String
00002A25-0000-1000-8000-00805F9B34FB Serial Number String
00002A26-0000-1000-8000-00805F9B34FB Firmware Revision String
00002A06-0000-1000-8000-00805F9B34FB Alert Level
00002A19-0000-1000-8000-00805F9B34FB Battery Level
00002A23-0000-1000-8000-00805F9B34FB System ID
00002A53-0000-1000-8000-00805F9B34FB RSC Measurement
00002A54-0000-1000-8000-00805F9B34FB RSC Feature
00002A7A-0000-1000-8000-00805F9B34FB Heart Rate Measurement
00002A2A-0000-1000-8000-00805F9B34FB IEEE 11073-20601
00002A4A-0000-1000-8000-00805F9B34FB HID Information
00002A4B-0000-1000-8000-00805F9B34FB Report Map
00002A4C-0000-1000-8000-00805F9B34FB HID Control Point
00002A4D-0000-1000-8000-00805F9B34FB Report
00002A5D-0000-1000-8000-00805F9B34FB Sensor Location
00002A63-0000-1000-8000-00805F9B34FB Cycling Power Measurement
00002A65-0000-1000-8000-00805F9B34FB Cycling Power Feature
00002A76-0000-1000-8000-00805F9B34FB UV Index
00002A00-0000-1000-8000-00805F9B34FB Device Name
00002A01-0000-1000-8000-00805F9B34FB Appearance
00002A02-0000-1000-8000-00805F9B34FB Peripheral Privacy Flag
00002A03-0000-1000-8000-00805F9B34FB Reconnection Address
00002A04-0000-1000-8000-00805F9B34FB Peripheral Pref. Conn. Para.
00002A05-0000-1000-8000-00805F9B34FB Service Changed
00002A08-0000-1000-8000-00805F9B34FB Date Time
00002A09-0000-1000-8000-00805F9B34FB Day of Week
00002A0A-0000-1000-8000-00805F9B34FB Day Date Time
00002A0C-0000-1000-8000-00805F9B34FB Exact Time 256
00002A31-0000-1000-8000-00805F9B34FB Scan Refresh
00002A38-0000-1000-8000-00805F9B34FB Body Sensor Location
00002A4E-0000-1000-8000-00805F9B34FB Protocol Mode
00002A4F-0000-1000-8000-00805F9B34FB Scan Interval Window
00002A55-0000-1000-8000-00805F9B34FB SC Control Point
00002A5B-0000-1000-8000-00805F9B34FB CSC Measurement
00002A5C-0000-1000-8000-00805F9B34FB CSC Feature

de
cr
ip
to
rU

U
ID 00002902-0000-1000-8000-00805F9B34FB Client Char. Con�guration

00002901-0000-1000-8000-00805F9B34FB Char. User Description
00002900-0000-1000-8000-00805F9B34FB Char. Extended Properties
00002904-0000-1000-8000-00805F9B34FB Char. Presentation Format
00002908-0000-1000-8000-00805F9B34FB Report Reference
00002907-0000-1000-8000-00805F9B34FB External Report Reference

Table 8: Uncovered Standard UUIDs.

A.2 Uncovered Standard UUIDs in AdBP
This paper has discovered 11 service, 30 characteristic, and 6 de-
scriptor that are labelled by standard UUIDs. These UUIDs as well
as their semantics are listed in Table 8.
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